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I SUMMARY~

How can the user of an automatic theorem-prover respond to the

failure of the system to prove a given theorem? We know of three

conventional responses: (1) modify the theorem-proving progran itself,

(2) guide the machine to the proof by interacting with a proof-checker-

like facility, and (3) guide the machine to the proof by adding to its

database of lemmas. Alternative (1) can be easy, but it may result in

bugs in the theorem-prover and therefore requires extreme caution and

expertise not to be expected of every user. Even if an error-free

modification is made, it may amount to the assumption of what was

supposed to be proved. Alternative (2) is safe and sound, but very

tedious and it does not improve the theorem-prover for the next occasion

on which a similar proof is required. Alternative (3) is also safe and

sound if the theorem-prover proves the lemmas before accepting them.

But this alternative, too, can be very tedious, or even hopeless, if the

theorem-prover's heuristics fail to use the new lemmas in the ways

intended by the user.

In this paper we describe and justify logically an implementation

of a fourth alternative. We have improved the theorem-prover described

* iin A Computational Logic [11 so that one of the alternatives now

available to the user is to modify the theorem-prover by adding

executable code. This code can cause the system to pursue new

strategies and apply new proof techniques under arbitrary heuristic

control. However, to ensure the soundness of the resulting theorem-

prover, each purported proof technique must be proved correct by the'4 theorem-prover before it is incorporated into the system.

*The work reported here was supported in part by NSF Grant MCS-7904081

and ONR Contract M00014-75-C-0816.



To extend our theorem-prover by adding a new piece of code the user

proceeds as follows.

First, the user conceives some transformation from terms of the

theory to terms of the theory that he wishes the theorem-prover would

make.

Second, the user must understand a correspondence between terms of

the theory and certain constants of the theory. This correspondence is

simple and resembles the use of lists and atoms to represent the

expressions of LISP.

Third, the user must define a new function in the logic of our

system. While defining this function the user can think of himself as

implementing the term transformation that he desires. lie writes the

function so that if his desired transformation takes a term t to a term

t', then his function maps the constant corresponding to t to the

constant corresponding to t'. (Because our language is related to that

of Pure LISP, it will often not be difficult for the user to define his

function in our theory if he can define it in Pure LISP. In A

Computational Logic [I], we present many examples of functions that

perform simple list processing operations and we even present some

functions that are actually simple theorem-provers.)

Fourth, the user presents the definition of his function to our

theorem-prover. The theorem-prover attempts to check that the

definition satisfies our principle of definition. If the theorem-prover

is successful, then the definition is admitted and the user is assured

that there does exist one and only one function satisfying his

definition.

Fifth, if the definition is admitted, the user asks the system to

prove a certain "correctness" theorem about the new function. TheP4 correctness theorem will be described informally in the next subsection.

Finally, if the correctness theorem is proved, the system I
incorporates into its simplifier new compiled code, derived from the

function definition, that operates on the very INTERLISP data structures

2



used to represent terms in our theorem-proving program. If the new code

is applied to an INTERLISP object that represents a term t, the result

of the application will be an INTERLISP object that represents the term

into which the user wished to transform t.

Once all these steps have been completed, the future behavior of

the theorem-prover will be altered as follows. At a certain place in

our theorem-prover's simplification routine, the code for the user's

function is applied to the representation of the term that the theorem-

prover is currently working on. The theorem-prover uses the output of

that application as the representation of the new current term, thereby

fulfilling the user's desire to transform terms.

In this paper we describe (a) the correspondence between terms and

constants, (b) the correctness theorem for metafunctions, and (c) the

translation from user definition to compiled code. We establish in this

paper that the new compiled code is a correct simplifier. We illustrate

all the ideas discussed with a metafunction that usefully extends our

system and that has been proved correct. We also discuss the difficulty

of proving useful metafunctions correct. Before presenting the details,

we now sketch the entire paper and compare our work to that of others.

A. The Correctness Theorem

Suppose that the user has defined his function, fn, and that it has

been accepted under our principle of definition. At this time, there

are only a finite number of function symbols, say fl, ..., fro about

which any axioms (e.g., definitions) have been made.

Before formulating the correctness theorem for fn, we first

• iintroduce and axiomatize in our current theory, T, two functions, FORMP

and MEANING, which take one and two arguments, respectively. We assume,

without loss of generality, that the symbols FORMP and MEANING are not
among the f,, ..., fro"

The precise axioms added to define these two functions are

presented later. Intuitively, the axioms about FORMP are sufficient to

3
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Tv
derive for any constant c whose only function symbols are in fl, fm*
whether c corresponds to some term in the theory T. Intuitively,

MEANING is axiomatized to take as its first argument a constant

corresponding to some term in T and as its second argument an assignment

of values to variables; MEANING returns the value of the term under the

assignment.

For example, consider the term (PLUS X Y). The constant

corresponding to this term is

(CONS "PLUS" (CONS "V" (CONS "Y" "NIL"))).

MEANING is axiomatized so that when it is applied to this constant and

to the assignment that assigns 5 to "X" and 6 to "Y", then MEANING

returns 11. (As will be explained, "V" is an abbreviation for a certain

constant in our theory, namely (PACK (CONS 88 0)). 88 happens to be the

ASCII code for the character X.)

The correctness theorem for the metafunction fn is:

(IMPLIES (FORMP X)
(AND (EQUAL (MEANING X A)

(MEANING (fn X) A))
(FORMP (fn X)))).

That is, for all X, if X is a constant corresponding to some term, then

for all assignments A, the MEANING of X under A is the same as the

MEANING of (fn X) under A. Furthermore, (fn X) also corresponds to some

term.

Suppose that the theorem-prover can prove the correctness theorem

for fn. "So what," the reader may say, "if random axioms are assumed,

then anything can be proved. How do I know that the axioms about FORMP

and MEANING have any sense? Furthermore, even if they are sound, why

should I be interested in a theorem that is a consequence of those

axioms? In particular, how does your correctness theorem let me use fn

as a proof procedure?" We now answer these questions by demonstrating

y how fn can be used to simplify terms.

V.

4



First, let us delete the axioms about FORMP and MEANING that we

added to the theory T after the definition of fn. Suppose that sometime

later, perhaps even after adding some new function definitions tor even

some other kinds of axioms), the user wishes some term p to be replaced

by its transform. Let f1, ... ' f pbe the sequence of function symbols

about which there are now axioms. Of course, all of the function

symbols occurring in the term p will be among the f1, ... , f * Let us

now define the functions MEANING and FORMP in such a way that the axioms

that were previously added will be true. In our definition of MEANING,

we shall adopt an entirely arbitrary position about the meaning of

constants that contain function symbols other than fl, ... ' f . We
p

shall define FORMP so that it is false on constants not corresponding to

terms of the current theory.

Because FORMP and MEANING are defined to satisfy the axioms we had

previously added, there exists a proof of the correctness theorem for fn

in our current theory.

Now suppose that c is the constant of the theory that corresponds

to p. Since the definition of fn was accepted under our principle of

definition, there exists a constant d such that

(EQUAL (fn c) d)

is a theorem. Since c corresponds to p, c satisfies FORMP. By the

correctness theorem for fn, d will satisfy FORMP and will in fact be the

constant corresponding to some term q. Furthermore, by the correctness

theorem for fn, it will be a theorem that:

(EQUAL (MEANING c A)
(MEANING d A)).

Finally, it can be shown that there will exist a trivial assignment

a such that

(EQUAL (MEANING c a) p)

4 5



and

(EQUAL (MEANING d a) q))

are both theorems. To see that there always exists such a trivial

assignment a, consider this example: let p be the term (PLUS X Y) and

let c be corresponding constant

(CONS "PLUS" (CONS "V" (CONS "Y" "1NIL")))

then for the assignment a

(CONS (CONS "X" X)

(CONS (CONS "Y" Y)
"NIL"))

it is the case that (EQUAL (MEANING c a) p).

Since the user's definition of fn transforms c into d, it is

understood that the user wishes the theorem-prover to transform p into

q. But we have proved that p = (MEANING c a) =(MEANING d a) - q.

Hence, there is a proof that p is equal to q, and the theorem-prover is

justified in replacing p with q.

B. The Implementation

In the preceding section we demonstrated how the proof of the

correctness theorem for a function fn could be used to justify the

transformation of some term p into another term q. It is not necessary

to repeat the proof that such transformations are legal every time we

make such a transformation. However, to take advantage of the

metatheorem, we want our theorem-prover to obtain q from p efficiently.

Specifically, we would like to obtain p from p with approximately the

same speed that we could obtain q from p if we had hand-coded an

INTERLISP function analogous to fn instead of introducing fn into our

theory. There were three steps in computing q from p. The first step

was finding the constant c corresponding to p. The second step was

S finding the constant d such that (EQUAL (fin c) d). And the final step

was finding the term q to which d corresponded.

6



In our iiplementation of metafunctions we have arranged for the

first and third steps to be exceedingly efficient: in fact, they

literally take no time at all. The trick we use is to arrange our

INTERLISP representation of terms so that if obj is an INTERLISP object

representing a term t, then the INTERLISP list of length two whose first

member is the atom QUOTE and whose second member is obj represents the

constant corresponding to t.

Thus, if obj is an INTERLISP object we use to represent the term

(PLUS X Y), then the INTERLISP object constructed by consing QUOTE onto

obj onto NIL (in INTERLISP) is an object representing

(CONS "PLUS" (CONS "X" (CONS "Y" "NIL"))).

Thus, should we have a representation of p and desire to represent c, we

embed the representation of p in a QUOTE. On the other side, should we

have a representation of d and desire to obtain a representation of q,

we take the cadr (i.e., car of the cdr) of the representation of d. It

will turn out that we never actually have to represent c and d in going

from p to q, but it is the term representation above that makes it

possible. We will prove that if obj represents the term t then the

result of embedding obj in a QUOTE represents a term whose MEANING under

an appropriate assignment is t. The proof is complicated mainly by the

limitations and restrictions imposed by efficiency considerations and

INTERLISP (or any other real implementation language).

Now suppose we have the above representation of c. How can we

obtain d quickly? Recall that d is the constant equal to (fn c). When

a function is accepted under our definition principle our system

compiles an INTERLISP routine whose body is analogous to the definition.
For example, when the function APPEND is introduced with the definition:

Definition.
(APPEND X Y)

(IF (LISTP X)
(CONS (CAR X) (APPEND (CDR X) Y))

Y).

'77

)7

A

° !} .. . . .o -j " " .•



I

the system generates and compiles the INTERLISP routine IAPPEND:

(1APPEND (LAMBDA (X Y)

(COND ((AND (LISTP X) (NEQ (CAR X) 1SQM))
(CONS (CAR X) (1APPEND (CDR X) Y)))

(T Y)))).

The relationship between the mathematical function APPEND and the

INTERLISP routine 1APPEND is then as follows. If objl and obJ2 are

INTERLISP objects that, when embedded in QUOTEs, represent the constants

c1 and c2 in the theory, then the INTERLISP object computed by (IAPPEND

obj, obJ 2 ), when embedded in a QUOTE, represents a constant term d such

that (EQUAL (APPEND cl c2 ) d) is a theorem.

Thus, if fn has been accepted by the principle of definition the

INTERLISP routine Ifn has also been introduced. Suppose that after we

have proved the correctness theorem for fn we desire to use fn to

transform p to q. Suppose objc represents p. Let objc' be the result

of embedding objc in a QUOTE. Then objc' represents c. Let objd' be

the result of embedding in a QUOTE the result of executing lfn on the

cadr of objc'. Then objd' represents d. Let objd be the cadr of obJd'.

Then objd represents q. By the metatheorem, p and q are provably equal,

so we may substitute objd for objc in the representation of the

conjecture being proved. But if x' is the result of embedding x in a

QUOTE, the cadr of x' is x. Thus, the above scenario is equivalent to

applying Ifn to objc (the representation of p) to obtain objd (the

representation of q).

C. A Useful Metafunction

We have used metafunctions to improve the power of the theorem-

prover described in A Computational Logic. That theorem-prover was

powerful enough to prove its way from the Peano-like axioms for the

natural numbers and sequences to the existence and uniqueness of prime

factorizations without any built-in arithmetic procedures or heuristics.

However, it could not cancel an addend occurring arbitrarily deeply on

both sides of an equation. The reason was that it was not possible to

8
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state any useful lemma describing a schematic transformation. After

implementing metatheoretic extensibility as described, we used it to add

schematic cancellation.

The metafunction CANCEL was defined so that when given the symbolic

expression representing the equation:

(EQUAL (PLUS B (PLUS C (PLUS I X)))
(PLUS (PLUS A (PLUS I J)) (PLUS K X)))

CANCEL produces the symbolic expression for

(EQUAL (PLUS B C)
(PLUS A (PLUS J K))).

CANCEL works by computing the fringe of the two PLUS-trees on each side

of the symbolic equation, intersecting the fringes with the "bag"

intersect function, subtracting the bag of common addends from each

fringe, and then reconstituting the modified fringes into right-

associated PLUS-trees in a new symbolic equation. However, to be

correct CANCEL must take into account the typeless syntax of our theory.

Thus, when given

(EQUAL A (fLUS A B))

it returns

(IF (NUMBERP A)
(EQUAL 0 (FIX B))
(FALSE)).

Furthermore, it does not bother to construct this expression if one

h side of Lhe equation is not an element of the fringe of the other

because it would be a heuristic mistake.

CANCEL is fairly complicated. In all, its definition (together

with those of its subfunctions) requires 100 lines of "prettyprinted"

text. In this paper we carefully describe the cancellation function and

the proof of its correctness. The proof is constructed by our theorem-

'1J
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prvrfrom the axioms of Peano integers, atoms, and ordered pairs,

wtotany built-in knowledge of arithmetic. We also explain the

INTERLISP code generated for the function and explain how it is -

integrated into our automatic theorem-prover. The incorporation of this

new proof procedure, which was mathematically defined and mechanically

proved correct, increases the power of the system without noticeably

affecting its speed.

D. Related Research

We now compare our approach to extensibility with recent work by

others on the same subject. The basic premise of all work on extensible

theorem-provers is that it should be possible to add new proof

techniques to a system without endangering the soundness of the system.

It seems possible to divide current work into two broad camps. In the

first camp are those systems that allow the introduction of arbitrary

new procedures, coded in the implementation language, but require that

each application of such a procedure produce a formal proof of the

correctness of the transformation performed. In the second camp are

those systems that contain a formal notion of what it means for a proof

technique to be sound and require a machine-checked proof of the

soundness of each new proof technique. Once proved, the new proof

technique can be used without further justification. Our system is in

the second camp.

The LCF system, described by Milner et al. (5], is an example of a

system in the first camp. The LCF mietalanguage is a programming

language that provides the data type "theorem." "Theorems" can be

produced only by the basic rules of inference, which are implemented as

procedures. The user can define new rules of inference as procedures

that produce theorems by calling lower-level procedures under the

control of arbitrary heuristics. The new rules of inference are sound

(when they do not cause run-time errors) since the result produced by

any given application must in fact have been produced by a correct

sequence of applications of the lowest-level rules of inference.

10



Brown, in (3], proposes another system in the first camp. He

suggests that each new proof procedure be coded in some conventional

implementation language (e.g., LISP or machine code) but have an

auxiliary procedure capable of producing a formal justification of any

given application. To illustrate the idea, he exhibits a LISP program

to find and cancel a single common addend on each side of an equation.

As one example justification he suggests the proof procedure that

derives the output from the input using only the associative,

commutative, and cancellation laws for PLUS. *

In essence systems from the first camp are extensible because they

provide a facility whereby the user can define succinct abbreviations

tniat may be mechanically translated into long sequences of proof steps.

The advantage such systems have over those of the second camp is that

new proof procedures can be used without having to prove them correct.

The primary disadvantage we see is one of efficiency: no natter how

elaborate one's new rules of inference are, the system must plod through

proofs at the lowest level.

Weyhrauch's work on FOL 171 exemplifies the second camp. He has

implemented in FOL a system in which the formulas of one theory are the

objects in another. In the upper theory he formalizes the syntax and

rules of inference of the lower theory. To prove that a function in the

upper theory is a sound simplifier for the lower theory one must prove

in the upper theory that there exists a proof in the lower theory of the

equality of the input and output. To apply such a metafunction to a

formula during a proof at the lower level, Weyhrauch "reflects" the

formula into a constant at the upper level, symbolically applies the

metafunction to that constant, and then reflects the result back down.

To make the process more efficient, Weyhrauch provides the perilous act

*As a second justification Brown uses a meaning function, virtually

identical to ours and described earlier by Brown in (2], tc express the
schematic cancellation law. However, he does not express the law in a
way that permits its mechanical application. In fact, he says that all
of his mathematical justification procedures are sufficiently
inefficient that they should be run to obtain a formal proof only when a
step of the informal proof is "challenged."



of "semantic attachment" by which the user can associate programming

entities (data structures and procedures) with logical entities

(formulas and functions). Of course, perilous acts, while perfectly

legitimate in the hands of a careful implementor, are to be considered

illegal in the hands of careless users. Using semantic attachment,

Weyhrauch arranges for the programming objects that represent formulas

at one level to represent objects at the other. He can also arrange for

certain built-in metafunctions (namely, those corresponding to the proof

procedures in his system) to be executed very efficiently (as calls to

the appropriate procedures).

Another example of the second camp was proposed by Davis and

Schwartz in [4]. Like Weyhrauch they propose to embed formally the

rules of inference of their logic in the logic. Unlike Weyhrauch they

do not introduce a new "metatheory" but rather embed the rules of

inference in a decidable subtheory. Like us, they then provide a

MEANING-like function to map from formulas in the logic to constants.

They propose to prove the correctness of "metafunctions" by proving that

there exists a constant that is a "proof" of the equivalence of the

input and output of the function.

Of course, while the second camp has only in the last few years

begun to attract the attention of researchers in automatic theorem-

proving, G~del 11t the campfire in 1931 when he showed that one can

define functions thaL are proot-checkers for the theory containing them.

We can thus summarize' the relationship between our work and that of

others as follows. Our work is different from that of Milner et

al. [5] and Brown [3] primarily because we are in the second camp.

Our theoretical approach is different from Weyhrauch's [7] and Davis

and Schwartz's (4] because we avoid the complexity of embedding the

rules of inference of our logic in our logic and (unlike Weyhrauch) do

I4 not have to formalize the notion that one theory is the metatheory of

12
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another. * Our implementation is different from any reported

implementation of metatheoretic extensibility because we show how the

user can achieve efficiency comparable to hand-coded procedures in the

implementation language without availing himself of perilous acts.

E. The Key Problem: Theorem-Proving

Once the theoretical justification and practical implementation of

metatheoretic extensibility is completed, the researcher must confront

the fundamental problem for those in the second cmp: proving the

correctness of new metafunctions with a mechanical theorem-prover. If

it is not practical to prove the correctness of ;kew procedures with the

tools provided, then -- depending on whether users can add new axioms --

the extensibility is either unusable or unsafe because users will add

axioms stating the correctness of new procedures. The latter is little

better than the ad hoc approach of alternative (1), i.e., the arbitrary

hand-recoding of the theorem-prover.

We did not begin to consider seriously the incorporation of

metafunctions until we had some evidence that our system could prove the

correctness of metafunctions that would actually improve the system.

The evidence came in September, 1978, when we had the system prove that

CANCEL preserved MEANING (even though at that time the system could not

employ that result metatheoretically).

The proof of the correctness theorem for the cancellation function

did provide an interesting exercise for our theorem-prover. However,

the number and difficulty of the intermediate lemmas that we formulated

and the theorem-prover proved on the way to the main correctness theorem

were less than the number and difficulty of the lemmas used in our proof

6 of the correctness of a tautology-checker in Chapter IV of

A Computational Logic. To formulate the lemmas and get the theorem-

4

In defense of Weyhrauch's logical machinery it must be observed that

his goal is the study of formal theories of reasoning -- in which
metatheoretic reasoning plays a crucial role -- while ours is the much
less ambitious one of getting permission to apply user-supplied proof
procedures.

13
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prover to prove the correctness theorem took one of the authors less

than a day from the time the exercise was conceived. The earliest proof

attempt found a bug in CANCEL: it cancelled multiple occurrences of an

addend on one side against one occurrence on the other, due to the use

of "list difference" rather than "bag difference." Because of the small

amount of user effort necessary to introduce a correct cancellation

procedure we are optimistic that our approach to extensibility may be

feasible.

However, we conclude with three observations.

First, no implementation of metatheoretic extensibility will be

feasible unless the mechanical theorem-prover can prove theorems about

inductively defined concepts such as terms, formulas, and their

meanings.

Second, it is interesting to ask whether a sound and practical

approach to metatheoretic extensibility can be based on a simpler

theorem-prover than ours. We suspect that it might take weeks to prove

the correctness of a useful metafunction, such as our cancellation

function, if one used a simple proof-checker.

Third, some theorem-prover researchers who, like us, are in the

business of building theorem-provers to be used by a large community of

users, may regard the provision for user extensibility (via either camp)

to be an adequate response to the constant appeals from users to improve

the power of the system. After all, extensibility gives the user the

ability to tailor the system to his needs. But we do not see

extensibility as a panacea for the current lack of theorem-proving

power. It is a solution to a relatively simple problem: how to obtain

insurance against unsoundness. The truly hard intellectual problem

remains: the discovery of harmoniously cooperating heuristics for

marshalling a very large number of facts and constructing difficult

proofs.

4 14
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F. Organization of this Paper

The structure of our presentation is as follows. In Section II

we illustrate the introduction and use of a metafunction after briefly

reviewing our formal logic as it was presented in (1]. In Section

III we describe certain minor revisions made to the logic described in

I] to undertake the meta-approach conveniently, and we present some

formal nomeclature used in the proof of the Metatheorem. In Section

IV we state and prove the Metatheorem, which establishes that

metafunctions can be applied. In Section V we outline our INTERLISP

implementation of metafunctions in our theorem-proving program. In

Section VI we describe the representation of terms in our theorem-

proving program and in Section VII we prove some lemmas used in the

demonstration that we have correctly implemented the Metatheorem. In

Section VIII we explain how we translate user-defined functions into

efficient INTERLISP procedures. In Section IX we describe the

mechanical proof of the correctness of the example metafunction

described in Section II and we comment on the difficulty of such

proofs. In Section X we describe details of the implementation of

metafunctions and give some output generated by our theorem-prover while

using a metafunction.

1

1
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II AN EXAMPLE

In this section we illustrate the use of metafunctions by writing

in our logic a recursive function for cancelling all common addends on

opposite sides of an equation. Our example is similar to but more

elaborate than the one used by Brown in (3].

A. A Sketch of Our Formal Theory *

A term is either a variable symbol (which we define precisely in

Section III), or else it is a sequence consisting of a function symbol

of n arguments, followed by n terms. We use the prefix syntax of Church

to write down terms. For example, if PLUS is a function symbol of two

arguments, we write (PLUS X Y) where others might write PLUS(X,Y) or

x+Y.

Our theory is obtained by starting with the axioms and rules of

inference of propositional calculus with equality and function symbols

(including the rule of inference that any instance of a theorem is a

theorem) and adding (a) axioms for certain basic function symbols, (b) a

rule of inference permitting proof by induction, (c) a principle of

definition permitting the introduction of total recursive functions, and

(d) the "shell principle," permitting the introduction of axioms

specifying "'new"~ types of inductively defined objects.

The basic function symbols are TRUE, FALSE, IF and EQUAL. The

h first two are function symbols of no arguments and may be thought of as

distinct truth values IF is a function symbol of three arguments and

is axiomatized so that (IF X Y Z) - Z if X - (FALSE) and (IF X Y Z) - Y

if X 0 (FALSE). EQUAL is a function symbol of two arguments and

axiomatized so that if X - Y, (EQUAL X Y) - (TRUE), and if X iE Y, (EQUAL

Our formal theory is described in detail in Chapter III of

A Computational Logic.
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Y) =(FALSE). (The ""sign used here is the usual equality

In our logic, terms also play a role similar to the one that

formulas play in predicate calculus. For example, by an abuse of the

word "theorem" (which is usually only applied to formulas), when we say

(EQUAL X X) is a theorem we mean (EQUAL X X) 4 (FALSE) is a theorem.

Using IF we define the function NOT, of one argument, that returns

(TRUE) if its argument is (FALSE) and returns (FALSE) otherwise. We
similarly define the dyadic functions AND, OR, and IMPLIES.

our principle of induction is based on the notion of well-founded

relations (i.e., relations for which there exist no infinite sequence of

successively smaller objects). Suppose r is a well-founded relation and

that the measure m of (d X) is r-smaller than m of X when X has property

q. Then the induction principle permits one to prove (p X Y) by proving

two other conjectures. The first, called the "base case," is that (p X

Y) is true when X does not have property q. The second, called the

"induction step," is that (p X Y) is true when X has property q and (p

(d X) a) is true.

Our principle of definition provides the ability to introduce new

recursive function definitions, provided certain theorems can be proved

beforehand. The theorems require the exhibition of a measure and well-

founded relation under which the arguments to recursive calls are

getting smaller. Such theorems, together with some trivial syntactic

requirements, are sufficient to guarantee the existence and uniqueness

of a function satisfying the defining equation.

Finally, the "shell principle" provides a means for introducing

b "1new"~ types of inductively defined objects that may be thought of as

typed n-tuples with type restrictions on the components. The shell

principle allows the user of the theorem-prover to characterize the

desired objects by specifying n, the type restrictions, and (new) names

for the primitive functions on the new type. Provided certain trivial

* syntactic requirements are met, the shell principle adds to the theory a

set of axioms describing the new type. Using the shell principle we

/7
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introduce three sets of objects into the initial version of the theory.

These initial shells are:

* The Peano integers, with recognizer NUMBERP, bottom object
(ZERO), constructor ADDI of one argument which must be a
NUMBERP or else defaults to (ZERO), accessor SUB,, and
well-founded relation SUBIP.

* The "literal atoms," with recognizer LITATOM, bottom object

(NIL), constructor function PACK of one argument of
arbitrary type, accessor UNPACK (which returns (ZERO) on
non-LITATOMs), and well-founded relation UNPACKP.

* The "ordered pairs" or "lists," with recognizer LISTP, no

bottom object, constructor function CONS of two arguments
of arbitrary type, accessors CAR and CDR (which default to
(NIL) on non-LISTPs) and well-founded relation CAR/CDRP.

The "recognizer" function is axiomatized to return (TRUE) or

(FALSE) according to whether its argument is a member of the new type.

The optional "bottom object" function of no arguments represents an

"empty" object of the new type. The "constructor" function takes n

arguments and has as its value an n-tuple of the new type. If the ith

argument position has a "type restriction" that is not satisfied by the

ith argument, the argument is "coerced" into the right type by being

replaced by a "default value." The "type restriction" either requires

that the argument be of one of a finite number of types or requires that

the argument not be of one of a finite number of types. The ith

"accessor" function is axiomatized so that when applied to an n-tuple of

the new type it returns the ith component. When applied to an object

other than a tuple of the new type, the ith accessor returns the ith

default value. Finally, the "well-founded relation" is axiomatized so

that the components of an n-tuple are smaller than the tuple.

We complete the initial development of the theory by introducing
b

the well-founded relation and the measure function that are most

commonly used in our theory: the "less than" relation on the Peano

integers and the "size" of a shell object. The "less than" relation is

introduced as the recursively defined function LESSP, which returns
S(TRUE) if its first argument is less than its second, and (FALSE)

otherwise. LESSP treats any nonnumeric argument as though it were

(ZERO).

1
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The "size" of an object is computed by the function COUNT, which is

defined to be (ZERO) on bottom objects and nonshells and one plus the

sum of the sizes of the components on n-tuples.

The function PLUS is defined to compute the sum of its two

arguments. Our theory does not provide a "typed" syntax. Thus terms

such as (PLUS (TRUE) (TRUE)) are well formed. Our definition of PLUS

"coerces" nonintegers to (ZERO). In particular, we define PLUS with the

equation:

Definition.
(PLUS X Y)

(IF (ZEROP X)
(FIX Y)
(ADDI (PLUS (SUBI X) Y))),

where (ZEROP X) is defined to be (TRUE) when X is (ZERO) or not a

number, and (FALSE) when X is a non-(ZERO) number; (FIX Y) is defined to

be Y if Y is a number and (ZERO) otherwise.

That completes our brief sketch of the theory.

B. Abbreviations

It is convenient to be able to write down certain terms succinctly.

In [1] we introduce certain abbreviations, such as using (AND P Q R) as

an abbreviation of (AND P (AND Q R)), using 3 as an abbreviation of

(ADDI (ADD1 (ADDI (ZERO)))), and using (CADDR X) as an abbreviation of

(CAR (CDR (CDR X))).

In this paper we modify one of our conventions and introduce two

new ones.

We modify the convention in [1] under which expressions such as

1"X" and "PLUS" were abbreviations for certain LITATOM constants. We

continue to use quotation marks to abbreviate LITATOMs, but we change

the encoding. That is, we here adopt a new convention under which "X"

is an abbreviation for a LITATOM, but for a different LITATOM than

specified in [I]. Our new encoding (which makes it easier to implement

20



metafunctions efficiently) is as follows. Suppose wrd is a sequence of

ASCII characters cl, ..., c. satisfying the definition of a "symbol"

(see Section III). Suppose the ASCII character codes for cl, ... , cn

are the integers il, ..., in' Then "wrd" is an abbreviation of

(PACK (CONS i I (CONS i2 ... (CONS in 0) .

Thus, "NIL" is an abbreviation of

(PACK (CONS 78 (CONS 73 (CONS 76 0)))),

and "QUOTE" is an abbreviation of

(PACK (CONS 81 (CONS 85 (CONS 79 (CONS 84 (CONS 69 0)))))).

One of the axioms for the PACK shell is that (EQUAL (PACK X) (PACK Y))

is true if and only if (EQUAL X Y) is true. Thus, "NIL" is not "QUOTE"

because, using the similar axioms about the CONS and ADDI shells, (CONS

78 ...) is not equal to (CONS 81 ...). In general, two abbreviated

literal atoms are EQUAL if and only if the abbreviations are identical.

We introduce the following two new abbreviation conventions.

First, following LISP, we use (LIST t1 ... tn) as an abbreviation

of

(CONS t I (CONS t2 ... (CONS tn "NIL"))).

Thus, (LIST A B C) is an abbreviation of (CONS A (CONS B (CONS C

"NIL"))).

Second, in Section III we will introduce a shell representing the

negative integers and we shall there adopt a convention for abbreviating

negative constants.

4
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C. A Hypothetical Problem

We will now describe a realistic scenario in which the user of an

automatic theorem-prover is confronted with the inadequacy of the system

and is forced to consider the various alternative means of overcoming

the problem.

Suppose we have a mechanical theorem-prover for the logic just

described and that the theorem-prover can use equations as rewrite

rules. Further suppose that we had instructed our theorem-prover to

prove and then use the following equation as a rewrite rule:

(EQUAL (EQUAL (PLUS X Y) (PLUS X Z))
(EQUAL (FIX Y) (FIX Z))).

This theorem is the cancellation law for addition. Roughly speaking, it

says that if X is an addend on both sides of an equation it can be

"ocancelled." FIX is used because PLUS coerces its arguments to

integers.

Applying this lemma as a rewrite rule from left to right allows the

system to rewrite the equation:

(EQUAL (PLUS I (PLUS X Y))
(PLUS I (PLUS J K)))

to the equation

(EQUAL (PLUS X Y)
(PLUS J K))

(since (FIX (PLUS x y)) reduces to (PLUS x y) because PLUS is always

numeric). So, apparently, our rewrite-driven system now "knows" how to

cancel common addends.

But consider the following equation:

A (EQUAL (PLUS (PLUS A I) (PLUS B K))

(PLUS J (PLUS K (PLUS I X)))).

The cancellation law cannot be applied here, because the law requires

22



that the common addend be the first argument of the outermoet PLUS-

expression. Here wf., want to cancel the second and fourth addends on one

side against the third and second on the other.

How might the user of our system respond to this failure of the

system to carry out such a step in the proof? We consider the three

alternatives sketched in the introduction and then the meta-approach.*

D. An Exampie of Alternative I

Alternative (1) is to recode the theorem-prover. One suitable

modification would be to build in an associative-commutative unification

routine that "knows" PLUS s~ such a function and thus allows the

cancellation law, in the form in which it was stated, to apply. A more

direct solution would be to write a special-purpose routine for

cancellation of PLUS. Roughly speaking, the code for such a

modification would be as follows. If the expression in question is of

the form (EQUAL tl t2 ), regard tj and t2 as trees of addends and compute

their fringes. The intersection of the two fringes is the list of

common addends. The result of cancelling all common addends is then

obtained by removing each common addend from each fringe, reconstituting

two PLUS expressions from the altered fringes and constructing the

equation of those two expressions.

Such a program would correctly transform:

(EQUAL (PLUS (PLUS A I) (PLUS B K))
(PLUS J (PLUS K (PLUS I X))))

to

(EQUAL (PLUS A B)
(PLUS J X)).

*Lest the reader think that a mechanical theorem-prover without built-

in cancellation is a straw man designed to show off the use of
metafunctions, it should be observed that our theorem-prover, as
described in [1], has no built-in arithmetic of any sort and yet can
prove its way from the Peano axioms through uth-e prime factorization
theorem. Nevertheless, the addition of a cancellation mechanism
improves the power and performance oh. the system.
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However, one must be careful. For example if the intersect and

delete operations do not respect duplications, one is liable to

incorrectly simplify:

(EQUAL (PLUS A (PLUS A (PLUS B C)))
(PLUS A (PLUS X Y)))

to

(EQUAL (PLUS B C)
(PLUS X Y)),

cancelling two occurrences of A on the left against only one on the

right. In addition, one must remember that PLUS coerces its arguments.

For example, the simplification of:

(EQUAL (PLUS A B) (PLUS A (PLUS C D)))

to

(EQUAL B (PLUS C D))

is invalid, because the former might be true for a nonnumeric B while

the latter would be false.

Thus, the implementor of the theorem-prover must consider these

issues carefully before modifying the system. A less expert user of the

system should not be allowed to make such a change.

E. An Example of Alternative 2

Alternative (2) is to carry out the cancellation by directing a

proof-checker-like facility. This assumes the system has been well

enough engineered to allow the user to intervene at this step in the

proof without disabling all the desirable aspects of the automatic

theorem-prover. But suppose we can so intervene. Recall the equation

we wish to simplify

(EQUAL (PLUS (PLUS A I) (PLUS B K))
(PLUS J (PLUS K (PLUS I X)))).
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To describe the proof steps we must refer to individual PLUS-expressions

in the formula. We number the PLUS-expressions consecutively from 1 to

6, in the left-to-right order in which they appear. Each time we change

the equation, we renumber the PLUS terms with the same algorithm. Here

is one of many tossible sequences for simplifying the formula above,

assuming we have proved that PLUS is associative and commutative:

Commute 2
Reassociate 1
Commute 5
Reassociate 5

Commute 4
Reassociate 4
Cancel
Commute 2

Commute I
Reassociate I
Commute 4
Reassociate 3
Cancel

The result is

(EQUAL (PLUS B A)
(PLUS X J)).

This alternative does not solve the general problem of enabling the

automatic theorem-prover to carry out arbitrary cancellations.

Consequently, the user of the system must still be prepared to intervene

when opportunities for cancellation arise in the future.

To solve the general problem with this technique we would have to

write a program that detects the presence of common addends and

generates a sequence of proof steps for cancelling them. This is just

the approach of the first "camp" described in Section I. The program

could use the fringe-intersection technique described above to identify

1,: the common addends. Then, for each common addend, t, the program could

generate a sequence of commute and associate instructions intended to

move t into the first argument of the outermost PLUS on each side, and

then generate a cancel instruction. Finally, the entire sequence of

instructions would be given to the proof-checker and actually carried

25
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out. Of course, we do not have to worry about a mistake in our program

rendering our theorem-prover unsound, but the process of generating the

proof steps and then carrying them out is far more tedious than the ad
hoc approach of the first alternative.

F. An Example of Alternative 3

Alternative (3) is to prove sufficient lemmas to let the theorem-

prover carry out the necessary proof steps. In this case, it is

sufficient to prove the ugly lemma:

(EQUAL (EQUAL (PLUS (PLUS A I) (PLUS B K))
(PLUS J (PLUS K (PLUS I X))))

(EQUAL (PLUS A B)
(PLUS J X)))

by induction. This lemma is merely an ugly version of the PLUS-

cancellation law.

Once again we see that the solution to the specific problem does

not solve the general one of enabling the rewrite rules to carry out an

arbitrary cancellation. For example, each of the equations below

requires different versions of the cancellation law.

(EQUAL (PLUS X Y)
(PLUS X Z))

(EQUAL (PLUS Al (PLUS X Y))
(PLUS BI (PLUS X Z))

(EQUAL (PLUS Al (PLUS A2 (PLUS X Y)))
(PLUS Bi (PLUS B2 (PLUS X Z))))
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not to mention the "skewed" versions such as:

(EQUAL (PLUS Al (PLUS A2 (PLUS X Y)))
(PLUS X Z))

(EQUAL (PLUS Al (PLUS A2 (PLUS X Y)))
(PLUS BI (PLUS X Z)))

It should be clear that no finite set of such rewrite rules will

suffice to carry out all cancellations (unless we opted for alternative

(1) and first built in some facts about the equivalence classes of PLUS

expressions under associativity and commutativity).

G. The Meta-Approach

So much for the conventional alternatives. The meta-approach

proposed in this paper is to encode the cancellation algorithm as a

function in the logic itself and to prove it correct. We first describe

how we represent symbolic expressions as objects in our theory, then we

derive a definition of the cancellation function, and the statement of

its correctness. Finally, we show how the statement of correctness,

once proved, enables us to perform arbitrary cancellations from within

the theory.

1. Symbolic Expressions

Since we want to write recursive functions on symbolic

expressions we have to represent such expressions in terms of the

objects of our theory, e.g., LITATOMs and LISTPs. Our symbolic

expressions will be either variable symbols or the applications of

function symbols to argument expressions. We represent function and

pl! variable symbols by LI£ATOMs. We represent the application of a

function symbol to some arguments by the LISTP object whose CAR is the

function symbol and whose CDR is a list of the appropriate number of

argument expressions. Thus, the LITATOM (PACK (CONS 65 0)), abbreviated

as "A", is a symbolic expression that can be thought of as representing

a variable symbol. The LISTP object
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(CONS "PLUS" (CONS "A" (CONS "I" "1NIL")))

which may be abbreviated as

(LIST "PLUS" "A" "I")

is a symbolic expression representing the application of the function

symbol "PLUS" to two variable expressions, "A" and "I".

Intuitively, the symbolic expression above corresponds to

(PLUS A I), the application of the function PLUS to two arguments.

Eventually we will formally assign meanings to symbolic expressions,

making clear the connection between the LITATOM "PLUS" and the function

PLUS. But at the moment, the reader is advised to ignore that aspect of

the problem, forget that we are in a mathematical logic, and just

pretend we are writing a program to manipulate such expressions

according to the intuitive notion of their semantics.

2. The Cancellation Algorithm

We want a function, which we will call CANCEL, that when

applied to a symbolic expression representing an equation such as

(EQUAL (PLUS (PLUS A I) (PLUS B K))
(PLUS J (PLUS K (PLUS I X)))),

yields the symbolic expression representing the cancelled equation,

(EQUAL (PLUS A B)
(PLUS J X)).

Here is how our function works. We first ask whether the

expression is an equality with PLUS-expressions in both arguments. If

so, we compute the fringe of the two PLUS-trees and intersect them (with

4 a "bag intersection" function which respects duplications) to obtain a

list of common addends. We subtract the common addends from each fringe

(with "bag difference" which also respects duplications). Finally, we

construct two new PLUS-trees from the two resulting bags of addends and

embed them in an EQUAL expression.
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We thus need functions for recognizing symbolic equations and

PLUS-expressions, a function for computing the fringe of a tree of PLUS-

expressions, the bag intersection and difference functions, and the

function for constructing a tree of PLUS-expressions given the list of

addends.

The function PLUS.TREE?, defined below, returns (TRUE) or

(FALSE) according to whether its argument is a symbolic expression

representing the application of the function symbol "PLUS":

Definition.
(PLUS.TREE? X)

(AND (LISTP X)
(EQUAL (CAR X) "PLUS")).

If (PLUS.TREE? X) is (TRUE) we call X a "PLUS-tree." We could have

defined PLUS.TREE? to check that (CDR X) is a list of two elements, but

we will always be able to derive that if X is known to be well-formed.

If X is a PLUS-tree then (CADR X) is the first argument expression and

(CADDR X) is the second. The function EQUALITY? is similarly defined

but recognizes symbolic equations.

We define the "fringe" of an expression with the function

FRINGE. If its argument is a PLUS-tree, FRINGE recursively determines

the fringe of the two arguments and concatenates them with the function

APPEND. If its argument is not a PLUS-tree, FRINGE returns the

singleton list containing that argument.

Definition.

(FRINGE X)

h (IF (PLUS.TREE? X)
(APPEND (FRINGE (CADR X))

(FRINGE (CADDR X)))

(CONS X "NIL")).

Before the equation above is admitted into the theory, they
, ?definitional principle requires the exhibition of a measure under which

" the argument is getting smaller according to some well-founded relation.
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The measure COUNT and relation LESSP are sufficient -- in particular

both (CADR X) and (CADDR X) have smaller COUNT than X when X is a LISTP

ever if X is not a well-formed PLUS-expression. Thus, the equation

above is satisfied by one and only one function (as proved in []).

If X is

(LIST "PLUS"
(LIST "PLUS" "A" "I")
(LIST "PLUS" "B" lIft))

then (FRINGE X) is

(LIST "A" "I" "B" "K").

To operate on fringes we need the bag intersection and

difference functions. Since the definitions are similar, we consider

only the bag intersection function. The usual list intersection

function asks of each element, e, in its first argument whether e is in

the second. If so, e is put into the answer list, and if not, e is not

put into the answer list. If e occurs m times in the first argument and

at least once in the second, it is put into the answer m times. This

will not do for our purposes, since it would lead us to believe we could

cancel m occurrences of e. We must pay special attention to

duplications. In particular, if e occurs in the first argument m times

and in the second n times, then it must occur in the answer min(m,n)

times. This can be arranged by deleting an occurrence of e from the

second argument as soon as it has been used against an occurrence in the

first argument. Here is the definition of the bag intersection

function:

Definition.
(BAGINT X Y)

(IF (LISTP X)
(IF (MEMBER (CAR X) Y)

(CONS (CAR X)
(BAGINT (CDR X)

(DELETE (CAR X) Y)))
(BAGINT (CDR X) Y))

"NIL") .
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For example,

(BAGINT (LIST "B" "C" "C" "D" "D")
(LIST "A" "C" "C" "D" "E" "F"))

is equal to (LIST "C" "C" "D"). * The bag difference function, BAGDIFF,

is similarly defined.

Finally, we must define the function PLUS.TREE that converts a

list of addends into a tree of PLUS-expressions. Recall that PLUS.TREE

is used to "reconstitute" a PLUS-expression from its fringe minus any

common addends. There are several special cases. If the new fringe is

empty, it means all the elements of the old fringe were cancelled.

Thus, PLUS.TREE should return the term representing 0. If the new

fringe contains only one addend, x, then PLUS.TREE should return a

symbolic term that "coerces" x to a number since that is what the

original PLUS expression would have done. A suitable expression is (FIX

x). Otherwise, PLUS.TREE builds a right-associated PLUS-tree from the

list.

Definition.
(PLUS.TREE L)

(IF (NOT (LISTP L))
(LIST "ZERO")
(IF (NOT (LISTP (CDR L)))

(LIST "FIX" (CAR L))

(IF (NOT (LISTP (CDDR L)))
(LIST "PLUS" (CAR L) (CADR L))
(LIST "PLUS"

(CAR L)
(PLUS.TREE (CDR L)))))).

For example, when PLUS.TREE is given the list containing the symbolic

* The reader may be uncomfortable with the claim that BAGINT is the bag

intersection function. How do we know we have thought of all the cases?
The fact is that it does not matter. Since our functions are introduced
under the principle of definition we are certain they are functions.
Our bag intersection function might not be the same function the reader
is thinking of, but it does exist and is uniquely defined. The proof of
the correctness of CANCEL will establish that it has the necessary
properties.
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expressions for the variables A, B, and C, it returns the symbolic

expression for

(PLUS A (PLUS B C)),

that is, (PLUS.TREE (LIST "A" "B" "C")) is

(LIST "PLUS"
"A"l
(LIST "PLUS" "B" "C")).

We are now prepared to write a preliminary definition of CANCEL:

Definition.
(CANCEL X)

(IF (AND (EQUALITY? X)
(PLUS.TREE? (CADR X))
(PLUS.TREE? (CADDR X)))

(LIST "EQUAL"
(PLUS.TREE
(BAGDIFF (FRINGE (CADR X))

(BAGINT (FRINGE (CADR X))

(FRINGE (CADDR X)))))
(PLUS.TREE

(BAGDIFF (FRINGE (CADDR X))
(BAGINT (FRINGE (CADR X))

(FRINGE (CADDR X))))))
X).

But this definition of CANCEL does not handle the cancellation

suggested by (EQUAL (PLUS A (PLUS B C)) A) because the second argument

to the EQUAL is not a PLUS-tree. This situation will be handled

specially. It is incorrect to follow the paradigm above and produce

(EQUAL (PLUS B C) 0), because if A is nonnumeric, the former equation is

(FALSE) while the latter might be (TRUE). A correct way to cancel

(EQUAL (PLUS A (PLUS B C)) A) is to produce:

(IF (NUMBERP A)
(EQUAL (PLUS B C) 0)
(FALSE)).

We therefore add two more cases to the definition of CANCEL,

one to handle the possibility that the second argument to the equation

'.
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is not a PLUS-tree but is a member of the fringe of the first, and the

other to handle the symmetric case.

Here is the final definition of CANCEL.

Definition.
(CANCEL X)

(IF (AND (EQUALITY? X)
(PLUS.TREE? (CADR X))
(PLUS.TREE? (CADDR X)))

(LIST "EQUAL"
(PLUS. TREE

(BAGDIFF (FRINGE (CADR X))
(BAGINT (FRINGE (CADR X))

(FRINGE (CADDR X)))))
(PLUS. TREE

(BAGDIFF (FRINGE (CADDR X))
(BAGINT (FRINGE (CADR X))

(FRINGE (CADDR X))))))
(IF (AND (EQUALITY? X)

(PLUS.TREE? (CADR X))
(MEMBER (CADDR X) (FRINGE (CADR X))))

(LIST "IF"
(LIST "NUMBERP"

(CADDR X))
(LIST "EQUAL"

(PLUS. TREE
(DELETE (CADDR X)

(FRINGE (CADR X))))

(LIST "ZERO"))
(LIST "FALSE"))

(IF (AND (EQUALITY? X)
(PLUS.TREE? (CADDR X))
(MEMBER (CADR X)

(FRINGE (CADDR X))))
(LIST "IF"

(LIST "NUMBERP"
(CADR X))

k (LIST "EQUAL"
(LIST "ZERO")

jp (PLUS. TREE
(DELETE (CADR X)

4 (FRINGE (CADDR X)))))
(LIST "FALSE"))! x)))

WW
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The table below illustrates CANCEL's input-output behavior.

If c is a symbolic expression corresponding to the equation in some row

of the "input" column, them the equation corresponding to (CANCEL c) is

given in the same row of the "output" column.

Input output

(EQUAL (EQUAL (PLUS A B)
(PLUS (PLUS A I) (PLUS B K)) (PLUS J X))
(PLUS J (PLUS I (PLUS K X))))

(EQUAL (PLUS A X) (EQUAL (ZERO) (FIX B))
(PLUS A (PLUS B X)))

(EQUAL A (PLUS A B)) (IF (NU14BERP A)
(EQUAL (ZERO) (FIX B))
(FALSE))

The reader may be discouraged by the complicated nature of the

cancellation algorithm. However, the algorithm is no more complicated

than the logic requires and raises the very issues we would have to face

were we to build a general-purpose cancellation algorithm into the

theorem-prover by any of the alternatives sketched. Furthermore, in

stark contrast to alternative I, we will here have our fears of lurking

bugs eradicated by the system's proof of the correctness of the

algorithm.

3. Correctness of CANCEL

What does it mean to say that CANCEL is correct? Intuitively,

we would like to require that the output equation have the same truth

value under all assignments as the input equation. To express this

exactly, we introduce the notion of the "value" or "meaning" of an

expression under an assignment to the variables in it.

For example, the meaning of (LIST "PLUS" "All "I") under a

given assignment is the sum of the meanings of "A" and "I" under the

assignment. Suppose the only function symbols in which we were

interested were FALSE, ZERO, FIX, NUMBERP, PLUS, TIMES, EQUAL, and IF.
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Then we can define the function MEANING of two arguments, an expression

and a list of pairs associating variables (in the CAR of each pair) with

values (in the CDR). Given an atomic symbol, MEANING looks up and

returns its value under the list of pairs using the function LOOKUP.

Given an expression representing the application of one of the

function symbols above, MEANING returns the result of applying the

corresponding function to the recursively obtained MEANINGs of the

arguments. Give any other object, MEANING returns the arbitrarily

chosen value (TRUE).

Definition.
(MEANING X A)

(IF (NOT (LISTP X))

(LOOKUP X A)

(IF (EQUAL (CAR X) "FALSE")
(FALSE)

(IF (EQUAL (CAR X) "ZERO")
(ZERO)

(IF (EQUAL (CAR X) "FIX")

(FIX (MEANING (CADR X) A')

(IF (EQUAL (CAR X) "NUMBERP")
(NUMBERP (MEANING (CADR X) A))

(IF (EQUAL (CAR X) "PLUS")
(PLUS (MEANING (CADR X) A)

(MEANING (CADDR X) A))

(IF (EQUAL (CAR X) "TIMES")
(TIMES (MEANING (CADR X) A)

(MEANING (CADDR X) A))

(IF (EQUAL (CAR X) "EQUAL")
(EQUAL (MEANING (CADR X) A)

(MEANING (CADDR X) A))

(IF (EQUAL (CAR X) "IF")
(IF (MEANING (CADR X) A)

(MEANING (CADDR X) A)
(MEANING (CADDDR X) A))

(TRUE))))))))))

LOOKUP is defined in Section III
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There is nothing magic or "meta" about this function.* The

equation defines a unique function and is accepted under the principle

of definition because in each recursive call the COUNT (i.e., size) of

the first argument gets smaller according to the well-founded relation

LESSP. We happen to use the function PLUS to compute the value of a

form beginning with the LITATOM "PLUS", but this association between the

two is only an artifact of our definition of MEANING.

The intuitive statement that CANCEL ib correct is that under

any assignment the MEANINGs of the input and output of CANCEL are

identical.

Theorem. CANCEL.PRESERVES.MEANING
(EQUAL (MEANING X A)

(MEANING (CANCEL X) A)).

This conjecture can be proved by our theorem-prover; the proof

is discussed later in this paper. For the moment, suppose we have

proved CANCEL.PRESERVES.MEANING.

4. Using CANCEL to Cancel

We now have a recursive function, CANCEL, that manipulates

LISTP objects as though they were equations, and we can prove that the

function is correct with respect to a particular definition of MEANING.

But how can we use CANCEL to prove theorems?

Let us consider our example again. Suppose we are proving

some conjecture and would like to cancel the common addends in the

following equation, which we will call p:

(EQUAL (PLUS (PLUS A I) (PLUS B K))

(PLUS J (PLUS I (PLUS K X)))).

* The prefix "meta" suggests something arcane, such as metaphysics. In

fact, "meta" is Greek for "after." Metaphysics is so named not because
it is subtly related to physics but because in the received order of

Aristotle's works, the treatment of being, substance, cause, etc. comes

after the treatises on physical matters.
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That is, we would like to replace p by its cancelled form, which we will

call q:

(EQUAL (PLUS A B)
(PLUS J X)).

How can we use CANCEL, which operates on symbolic expressions,

to derive the equation q from p and how to we know that q and p are

probvably equal?

Let c stand for the following term

(CONS "EQUAL"
(CONS (CONS "PLUS"

(CONS (CONS "PLUS"
(CONS "A" (CONS "I" "NIL")))

(CONS (CONS "PLUS"
(CONS "B" (CONS "K" "NIL")))

"NIL")))
(CONS (CONS "PLUS"

(CONS "J"
(CONS (CONS "PLUS"

(CONS "I"
(CONS (CONS "PLUS"

(CONS "K"
(CONS "X" "NIL")))

"NIL")))
"NIL")))

"NIL") ))

which may be abbreviated as

(LIST "EQUAL"
(LIST "PLUS"

(LIST "PLUS" "A" "I")
(LIST "PLUS" "B" "K"))

(LIST "PLUS"
,,j,

(LIST "PLUS"~"I"
(LIST "PLUS" "K" "X") )))

k
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Let alist stand for the term:

(LIST (CONS "A" A) (CONS "I" I) (CONS "B" B)
(CONS "K" K) (CONS "J" J) (CONS "X" X)).

Then it is straightforward to confirm that the MEANING of c

under alist is in fact p, the formula we wish to simplify. That is, the

following is a theorem that may be proved by tediously expanding the

definition of MEANING:

*1 (EQUAL p (MEANING c alist)).

But by CANCEL.PRESERVES.MEANING we have the theorem:

*2 (EQUAL (MEANING c alist)
(MEANING (CANCEL c) alist)).

By expanding the definition of CANCEL we see that (CANCEL c) is equal

to:

(LIST "EQUAL"
(LIST "PLUS" "A" "B")
(LIST "PLUS" "J" "X")),

which we will call d. Thus, we have the theorem:

*3 (EQUAL (MEANING (CANCEL c) alist)
(MEANING d alist)).

But, by expanding the definition of (MEANING d alist) we have

*4 (EQUAL (MEANING d alist)
W (EQUAL (PLUS A B) (PLUS J X))),

or, equivalently

(EQUAL (MEANING d alist) q)

since the right-hand side of *4 is the equation we named q.

/
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Thus, we can indeed use MEANING, CANCEL.PRESERVES.MEANING and

CANCEL to derive q from p; furthermore, the chain of equalities *1 - *4

is a proof, within the theory, that p is equal to q, so we may replace p

by q.

The paradigm for using CANCEL as a formula simplifier is to

"lift" the formula to a symbolic expression with MEANING, "compute"

CANCEL on that symbolic expression, and then use MEANING again to "drop"

the symbolic expression back down to a formula. Of course, using the

words "lift" and "drop" suggests that we are "ascending" to and

"descending" from the metatheory, when in fact we are just translating

the problem from one form to another.

It should be clear that we can use MEANING and CANCEL in this

way to carry out an arbitrary cancellation, provided we can "lift" the

formula into symbolic form and "drop" the output of CANCEL.

However, were we to implement the mechanical application of

"metafunctions" along the lines just described, the implementation would

sink into a swamp of PLUS-trees. Note for example that in lifting p we

had to create a very large term, c. How do we even know such a term

exists? Can we obtain it without a lot of work? Can we be sure that

its MEANING is equal to p without the tedious expansion of MEANING

required to justify *1? How can we quickly simplify (CANCEL c) to some

new symbolic expression? Once that expression is obtained, do we know

we can drop it back down to a formula -- that is, a formula not

involving MEANING?

The remainder of this paper answers theie and other questions.

In particular, we carefully develop the logic behind the introduction

and use of metafunctions, we describe an INTERLISP implementation that

is very efficient, and we prove the correctness of our implementation.

3
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III FORMALITIES

Here we lay some groundwork for the proof of the Metatheorem.

A. Alterations to A Computational Logic

The basic logic for which we prove the Metatheorem is the one

described in Chapter III of A Computational Logic. To implement our

approach to metafunctions, we found it desirable to make the following

superficial changes to that logic.

1. Syntax

Here we alter the syntax of our language by increasing the set

of characters that can be used in symbols.

A symbol is a nonempty sequence of characters cl, ... , cn such

that (a) for each i greater than 0 and less than n+I, ci is one of the

following printing ASCII characters:

ABCDEFGH I JKLMNOPQRSTUVWXYZ
ab cd e f gh iJ klmnop qr s tuvwxyz
012 3456 7 89
!# $ & + ,-./:;< - > ? @\ ~

and (b) cl is not a digit, the plus sign, the minus sign, or period.

We assume that associated with each symbol is a nonnegative

integer called the arity of the symbol.

Intuitively, the arity of a symbol is the number of arguments

the symbol takes when used as a function symbol. For example, the

arities of TRUE, NOT, PLUS, and IF are, respectively 0, 1, 2, and 3.

The arity of other symbols will become clear as time goes by.
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A term is either a symbol or a finite sequence of length n+l

whose first member is a symbol of arity n, and whose remaining members

are terms.

Although we now formally permit lower case letters in our

terms, in this document we adhere to our convention of using lower case

words to denote "metavariables" standing for terms. When we say that a

term p has the form q, we mean that p can be obtained by replacing the

lower case symbols in q by symbols or terms. For example, (LESSP (D X)

X) has the form (r (D x) x) since it may be obtained by replacing r by

LESSP and x by X. (CONS A (CONS B "NIL")) has the form (CONS x y) and

also the form (LIST a b), since (LIST a b) is an abbreviation for (CONS

a (CONS b "NIL")). Finally, (CONS A B) does not have the form (CONS X

y).

When we enclose a lower case symbol in quotation marks it

should be understood to denote the same thing denoted by enclosing in

quotation marks the denotation of the symbol. For example, if wrd is

understood to denote ABC, then "wrd" is understood to denote "ABC".

2. Literal Atoms

The shell definition for LITATOMs is modified: there is no

bottom object.

We abandon the conventions in El] specifying the

interpretation of symbols in quotation marks (including the convention

that "NIL" was an abbreviation of the (now absent) bottom object). We

define our new abbreviation conventions below.

&3. Ordered Pairs

The default values for the CONS shell are 0 and 0 (instead of

"NIL" and "NIL").
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4. Negative Integers

Shell Definition
Add the shell MINUS of one argument
with recognizer NEGATIVEP,

accessor NEGATIVE.GUTS,
type restriction (NUMBERP XI),
default value 0, and
well-founded relation NEGATIVE.GUTSP.

5. Abbreviations

We continue to use the abbreviation conventions introduced in

[1], except that we modify the conventions concerning the abbreviation

of LITATOMs: if wrd is a symbol, and the ASCII character codes for the

characters in wrd are, in order, il, ..., in, then "wrd" is an

abbreviation of the term (PACK (CONS iI (CONS i2 ... (CONS in 0)...)).

In addition, we add two new abbreviations.

If n is a positive integer and tl, t2, ..., tn are terms, then

(LIST t I ... tn) is an abbreviation of (CONS tj (LIST t2 .. tn)).

(LIST) is an abbreviation of "NIL".

If n is a positive integer, then -n is an abbreviation of

(MINUS n).

6. SYMBOLP

In preparation for defining FORMP, we add definitions for the

functions LEGAL.CHAR.CODES, ILLEGAL.FIRST.CHAR.CODES,

LEGAL.CHAR.CODE.SEQ, SYMBOLP, and LOOKUP to our basic theory.

(LEGAL.CHAR.CODES) has as its value the list of ASCII codes of

those characters we permit to occur in symbol names (A-Z, a-z, 0-9, and

a certain set of signs). (ILLEGAL.FIRST.CHAR.CODES) has as its value

the list of those characters we do not permit as the first character of

A a symbol name (0-9, +, -, and .):
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Definitions.
(LEGAL. CHAR. CODES)

(LIST 65 66 67 ... 88 89 90

97 98 99 ... 120 121 122
48 49 50 ... 55 56 57

33 35 36 38 43 44 45 46 47 58

59 60 61 62 63 64 92 94 95 126),

(ILLEGAL.FIRST. CHAR. CODES)

(LIST 48 49 50 ... 55 56 57 43 45 46),

(LEGAL.CHAR.CODE.SEQ L)

(AND (LISTP L)

(SUBSETP L (LEGAL.CHAR.CODES))

(NOT (MEMBER (CAR L) (ILLEGAL.FIRST.CHAR.CODES)))
(EQUAL (CDR (LAST L)) 0)),

(SYMBOLP X)

(AND (LITATOM X)

(LEGAL.CHAR.CODE.SEQ (UNPACK X))),

(LOOKUP X ALIST)

(IF (NLISTP ALIST)

"NIL"
(IF (AND (LISTP (CAR ALIST))

(EQUAL X (CAAR ALIST)))

(CDAR ALIST)

(LOOKUP X (CDR ALIST)))).

Functions used but not defined in this paper (e.g., NLISTP,

LAST, MEMBER, and SUBSETP) are defined in [1) and are to be considered

part of the basic theory. Informally, (NLISTP X) is (NOT (LISTP X)),

(LAST X) is the last CONS in the CDR chain of X, (MEMBER X L) is (TRUE)

or (FALSE) according to whether X is a member of the list L, and (SUBSET

Li L2) is (TRUE) or (FALSE) according to whether every member of LI is a

member of L2.
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7. Miscellaneous

We prohibit the introduction of QUOTE and NIL as function

symbols in axioms (including definitions and invocations of the shell

principle).

B. Histories and Theories

The basic axioms are the axioms and definitions of Chapter III of

A Computational Logic, as amended above.

t can be proved directly from a set of axioms A if and only if t

may be derived from the axioms in A and the basic axioms by applying the

following rules of inference:

*The propositional calculus with equality and function
symbols

*The rule of inference that any instance of a theorem is a
theorem

*Our principle of induction

There are three kinds of axiomatic acts: (a) an application of the

shell principle, (b) an application of the principle of definition, and

(c) the arbitrary addition of an axiom. Each such act adds one or (in

the case of the shell principle) more axioms.

A history is a finite sequence of axiomatic acts such that for each

application of the principle of definition in the sequence, the theorems

required by the principle of definition can be proved directly from the

axioms added by the previous acts in the history.

If for some m, T1 is the sequence of axiomatic acts a,, ... , am and

for some n, T2 is the sequence of axiomatic acts ai, ... , am, ... . a n,
where n is greater than or equal to m, then T2 is an extension of Tr.

If a history T2 may be obtained from a history T, merely by adding

definition acts to the end of T1, then T2 is a definitional extension of

T1.

A conjecture t can be proved in a history T if and only if t can be

*1 proved directly from the axioms of some definitional extension of T.
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(For example, even though the proof of the correctness of the tautology-

checker presented in (1] involves the introduction of the new,

auxiliary concept of "IF-normal form," we say that the correctness

theorem "can be proved" in the history before the addition of the

definition of IF-normal.)

A history is constructive if it contains no arbitrary axioms.

A history is ordinary if there are no axioms of the history that

mention APPLY, MEANING, MEANING.LST, ARITY, FORM.LSTP, or FORMP as

function synbols.

t is a term of T if and only if t is a term, T is a history, and

every symbol mentioned as a function symbol in t is used as a function

symbol in some axiom of T.

C. Assumption of Consistency

We assume that if T is a constructive history, then T is

consistent, i.e., (EQUAL (FALSE) (TRUE)) cannot be proved in T. This

assumption plays an interesting role in the proof and implementation of

the Metatheorem; we comment further upon that role in Section VI.

If any constructive history is inconsistent, then elementary number

theory, at least, is inconsistent, since the constructive history can be

embedded in elementary number theory.

While we might offer a "proof" that every constructive history is

consistent, the only proof that we imagine requires at least the power

of elementary number theory. We find it difficult to imagine a proof of

the consistency of a constructive history within a mathematical theory

that was less powerful than a constructive history because all logical

theories of which we are aware require the power of inductive definition

* merely to define the language of any another logical theory.
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D. Explicit Value Terms

In A Computational Logic we define the notion of an "explicit value

term." We make extensive use of the properties of such terms in this

paper, so we here summarize their properties.

Suppose T is a history.

A term in T is said to be an explicit value term with respect to T

provided (i) it contains no variables, (ii) every function symbol in it

is either TRUE, FALSE, or the bottom object or constructor function

symbol of some shell class in T, and (iii) for each subterm of t of the

form (const t i ... tn), where const is the constructor function symbol

of some shell class in T, each ti satisfies the type restriction on the

ith argument position of const.

Examples of explicit value terms are (ZERO), (ADDI (ADD1 (ADDI

(ZERO)))), and (CONS (ADDI (ZERO)) (ZERO)). (ADDI (TRUE)) is not an

explicit value because (TRUE) violates the numeric type restriction for

ADD1.

Theorem. If t, and t2 are two distinct explicit value terms with

respect to T, then (NOT (EQUAL t1 t2 )) is a theorem.

Proof. We induct on the structure of t, and t2.

Base Case. If either tI or t2 is a variable, then the theorem is

vacuously true because variables are not explicit values.

Induction step. If t, and t2 are both function applications, say

(f s ... sm) and (g rl ... rn), then either f and g are the same

function symbol or not. If f is not g, then the theorem follows,

without appeal to the inductive hypotheses, merely by considering the

shell axioms and the axiom that (TRUE) is not equal to (FALSE). If f

and g are the same function symbol, then m is n and there is some i such

that si is not the same term as ri . By inductive hypothesis we can

prove that (NOT (EQUAL si ri)), and the desired conclusion follows from

the shell axiom for f that (EQUAL (f x, ... xn) (f xl' ... xn')) is

equivalent to the conjunction of (EQUAL x, xl) ... and (EQUAL xn xno),
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provided each xi and x'satisfies the ith type restriction on const.

Q.E.D.

A function symbol fn is explicit value preserving with respect to T

if it is TRUE, FALSE, IF, EQUAL, a function symbol axiomatized in T with

an application of the shell principle, or a function symbol defined in T

such that (a) every other function symbol used in the body of the

definition is explicit value preserving with respect to T and (b) the

theorems that must be proved under the principle of definition before fn

is admitted can be proved directly from the shell axioms of T and the

definitions of explicit value preserving functions with respect to T

defined before fn.

For example, APPEND, as defined as follows:

Definition.
(APPEND X Y)

(IF (LISTP X)
(CONS (CAR X) (APPEND (CDR X) Y))
Y)

is explicit value preserving.

The name "explicit value preserving" is derived from the

observation that if some term t is the application of such a function to

explicit values then it is possible to use the shell axioms and function

definitions to derive an explicit value v such that (EQUAL t v) is a

theorem. For example, using shell axioms and the definition of APPEND

it is easy to reduce (APPEND (CONS 1 (CONS 2 "NIL")) (CONS 3 "NIL")) to

the equivalent explicit value (CONS I (CONS 2 (CONS 3 "NIL"))). We now

make this observation more formal.

A term t is reducible with respect to T if and only if t mentions

no variable and every function symbol mentioned in t is explicit value

preserving with respect to T.

We define recursively the reduction of a reducible term t ot T. If

t is an explicit value, then the reduction of t is t. If t is not an

explicit value, then let s be the leftmost nonexplicit value subterm of
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t, (fn ti .. t n), such that either each ti is an explicit value or fn

is IF and t1 is an explicit value. The reduction of t is the reduction

of the term that results from replacing the leftmost occurrence of s in

t with the term ans defined as follows:

(1) If fn is EQUAL, ans is (TRUE) or (FALSE) according to
whether t1 is identical to t2.

(2) If fn is IF, ans is t3 or t2 according to whether t, is
(FALSE) or not.

(3) If fn is a recognizer for a shell class with constructor
function symbol c (and optionally, bottom object (btm)),
then if the function symbol of t is c (or btm) then ans
is (TRUE), and otherwise ans is (FALSE)

(4) If fn is the constructor function symbol for a shell
class of T, ans is the result of replacing in s each
argument ti that does not satisfy the type restriction of
the ith argument of fn with the ith default value.

(5) If fn is the ith accessor for some shell class of T with
constructor function symbol c, then if tI has the form (c
v .wVn) for some v , ... , Vn, then ans is vi and

1h-se ans is the Ith default value for c

(6) If fn is a defined function in T, ans is the result of
substituting each t for the corresponding formal
parameter of the definition of fn in the body of fn.

That "the reduction of a reducible term" is well defined can be

proved by induction because the definition of every defined function

satisfies our principle ot definition. That the reduction of a

reducible term t is an explicit value that is provably equal to t

follows from the fact that each step in the computation is justified by

an axiom.

Theorem. If c is an explicit value with respect to T, then the

reduction of (SYMBOLP c) in T is (TRUE) if and only if for some symbol

w, c is "w".

Proof. Suppose (SYMBOLP c) reduces to (TRUE). Then, by

definition, the reduction of (AND (LITATOM c) (LEGAL.CHAR.CODE.SEQ

(UNPACK c))) is (TRUE). Thus (LITATOM c) reduces to (TRUE) and c must

have the form (PACK Ist) and (UNPACK c) reduces to ist. Continuing the

argument through LEGAL.CHAR.CODE.SEQ we finally conclude that c must
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have the form (PACK (CONS t1 (CONS t2 ... (CONS tn 0)...))), where tj,

, tn are MEMBERs of (LEGAL.CHAR.CODES) and t1 is not a MEMBER of

(ILLEGAL.FIRST.CHAR.CODES). Thus, tl, ... , tn are NUMBERPs that may be

abbreviated with the integers il, ... , in. Furthermore, by the

definitions of LEGAL.CHAR.CODES and ILLEGAL.FIRST.CHAR.CODES, il, ... ,

i are ASCII codes satisfing the restrictions we place on symbols. Let

w be the symbol obtained by concatenating the ASCII characters for il,

• .. in• It is easy to confirm that c is "w". The proof in the other

direction is similar. Q.E.D.

E. Quotations

We now define the "correspondence" between terms.

Suppose that T is any history.

c is a quotation of t with respect to T if and only if c and t are

terms and either (i) t is a symbol and c is "t" or (ii) t has the form

(fn a, ... an) and either (a) t is an explicit value with respect to T

and c is (LIST "QUOTE" t) or (b) for some qj, ... , qn that are

quotations, respectively, of a,, ... , an with respect to T, c is (LIST

"fn" q, ... qn )  If c is a quotation of t with respect to T, then we

say t is the dequotation of c with respect to T.

Thus, a quotation of the variable symbol X is (PACK (CONS 88 0)),

which may be abbreviated "X". A quotation of (ADD1 (ZERO)), which is

the explicit value we abbreviate as 1, is (LIST "QUOTE" 1). But another

quotation of I is (LIST "ADDI" (LIST "ZERO")). A quotation of (NOT X)

is (LIST "NOT" "X"). Readers who feel uneasy about the use of such

expressions as "QUOTE" and "ADDI" in terms should recall that they are

mere abbreviations:
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"QUOTE" (PACK (CONS 81 (CONS 85 (CONS 79 (CONS 84 (CONS 69 0))))))

"1ADDO1" (PACK (CONS 65 (CONS 68 (CONS 68 (CONS 49 0)))))

"ZERO" (PACK (CONS 90 (CONS 69 (CONS 82 (CONS 79 0)))))

"NOT" (PACK (CONS 78 (CONS 79 (CONS 84 0))))

llxtl (PACK (CONS 88 0))

Theorem. If c is a quotation of t with respect to T, then c is an

explicit value term.

Proof. We induct on t. If t is a variable, c is "t", which is an

explicit value. Otherwise, t has the form (fin a, ... a n). If c has the

form (LIST "QUOTE" d) then, since QUOTE is not a function symbol, d is

an explicit value and, thus, so is c. Otherwise, c has the form (LIST

"fin" q, ... q)d, where each qiis a quotation the corresponding ai. By

induction hypothesis, each qi is an explicit value. Thus c is an

explicit value. Q.E.D.

Theorem. If c is a quotation of both tj and t2 with respect to T,

then ti is the same tern as t2.

Proof. We induct on the structure of C.

Base case 1. If the top function symbol of c is not CONS, then c

is not the quotation of any tern except a symbol. c cannot be a

quotation of two distinct symbols.

Base case 2. If c has the form (LIST "QUOTE" d), then since QUOTE

is not a function symbol, c is a quotation only of the explicit value d.

Induction Step. If the top function symbol of c is CONS but c does

not have the form (LIST "QUOTE" d), then for some fin, ql, ... , q12, c has

the form (LIST "fn" q, ... q,) where, by inductive hypothesis, each q

is a quotation of some unique t i* But then c can only be a quotation of

the tern (fin t, tn)* Q.E.D.
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IV THE METATHEOREM

A. The Metaaxioms and Metadefinitions

When we are trying to prove the correctness of a metafunction, we

have some axioms about MEANING, FORMP, and some auxiliary functions.

These axioms, called the "metaaxioms," specify the values of MEANING and

FORMP on symbolic expressions corresponding to terms in the current

theory. The axioms do not specify the values of MEANING and FORMP on

objects that "look like" symbolic expressions but that have unrecognized

function symbols.

Once a metafunction has been proved correct, we may apply it as a

new proof procedure -- even if new function symbols have been added to

the theory. Formally speaking, its application involves the

introduction of definitions of MEANING, FORMP, and some auxiliary

functions. These definition are called the "metadefinitions." The

definitions not only specify the values of MEANING and FORMP on symbolic

expressions corresponding to terms in the new theory, but on 11

explicit values. For example, FORMP is (FALSE) on any object that

"looks like" a symbolic expression but has an unrecognized function

symbol. But because the metaaxioms are easy consequences of the

metadefinitions, we can prove the correctness of the metafunction -- and

use it -- in the new theory.

By not completely specifying MEANING and FORMP during the

correctness proof for a metafunction, we permit the application of the

metafunction in extensions containing new function symbols. By

introducing MEANING and FORMP under the principle of definition when the

metafunction is used in the proof of a new conjecture, the proof of the

conjecture does not depend upon nondefinitional axioms about MEANING and

FORMP.
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Assume we have a standard ordering of all symbols and that TRUE,

NOT, IF, and PLUS come first, in that order.

Suppose that (a) T is a history, (b) TRUE, NOT, IF, PLUS, f5  ... I

fm is the sequence of symbols mentioned as function symbols in axioms of

T in the standard order, and (c) 0, 1, 3, 2, aL, ... , am is the sequence

of the arities of the symbols TRUE, NOT, IF, PLUS, f5L ...' fm.

1. The Metaaxioms

The metaaxioms for T are as follows:

(MEANING.LST X A)

(IF (NLISTP X)
"NIL"

(CONS (MEANING (CAR X) A)
(MEANING.LST (CDR X) A))),

(IMPLIES (NLISTP X)
(EQUAL (MEANING X A) (LOOKUP X A))),

(EQUAL (MEANING (LIST "QUOTE" X) A)
X),

(IMPLIES (NOT (EQUAL FN "QUOTE"))
(EQUAL (MEANING (CONS FN X) A)

(APPLY FN (MEANING.LST X A)))),

(EQUAL (APPLY "TRUE" X)
(TRUE)),

(EQUAL (APPLY "NOT" X)
(NOT (CAR X))),

(EQUAL (APPLY "IF X)
(IF (CAR X) (CADR X) (CADDR X))),

(EQUAL (APPLY "PLUS" X)
(PLUS (CAR X) (CADR X))),

... and so on for all of the functions f5 , " fm

k(EQUAL (ARITY "TRUE") 0),
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(EQUAL (ARITY "NOT") 1),

(EQUAL (ARITY "IF") 3),

(EQUAL (ARITY "PLUS") 2),

... and so on for all of the symbols "f2), ... I fro"

(FORM.oLSTP X)

(IF (NLISTP X)
(EQUAL X "NIL")
(AND (FORMP (CAR X))

(FORM.LSTP (CDR X)))),

(FORMP X)

(IF (NLISTP X)
(SYMBOLP X)
(IF (EQUAL (CAR X) "QUOTE")

(AND (LISTP (CDR X))
(EQUAL (CDDR X) "NIL"))

(AND (EQUAL (ARITY (CAR X)) (LENGTH (CDR X)))
(FORM.LSTP (CDR X))))).

Note that the value of (ARITY X) is unspecified if X is not

one of the LITATOMS "TRUE", "NOT", "IF", "PLUS", "f 5 ", - "f

Further, (FORMP X) is unspecified if X is a LISTP and (ARITY (CAR X)) is

unspecified.

Note also that FORMP is more elaborate than we sketched it in

the discussion of CANCEL. In particular, we require that function and

variable symbols be SYMBOLPs and that objects used as function symbols

have numeric arity and be provided with the proper number of arguments;

in addition, we allow the symbolic expression whose CAR is the LITATOM

"QUOTE" and whose MEANING is defined to be the CADR of the expression.

Note that we are not elevating QUOTE to a "function symbol" even at the

meta level of FORMP. We are merely axiomatizing the recursive functions

FORMP and MEANING to behave in a certain way when they encounter a LISTP

object whose CAR is (PACK (CONS 81 (CONS 85 (CONS 79 (CONS 84 (CONS 69
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2. The Metadefinitions

The ietadefinitions for T are as follows:

(APPLY X L)

(IF (EQUAL X "TRUE")
(TRUE)

(IF (EQUAL X "NOT")
(NOT (CAR L))

(IF (EQUAL X "IF")
(IF (CAR L) (CADR L) (CADDR L))

(IF (EQUAL X "PLUS")
(PLUS (CAR L) (CADR L))

(IF (EQUAL X "f5"t)
(f 5 (CAR L) ... (CAD. .. L))

(IF (EQUAL X "fm"
(fm (CAR L) ... (CAD ... R L))
(TRUE))))))),

(MEANING.LST X A)

(IF (NLISTP X)
"N IL"
(CONS (IF (NLISTP (CAR X))

(LOOKUP (CAR X) A)
(IF (EQUAL (CAAR X) "QUOTE"1)

(CADR (CAR X))
(APPLY (CAAR X)

(MEANING.LST (CDAR X) A))))
(MEANING.LST (CDR X) A))),

(MEANING X A)

(CAR (MEANING.LST (LIST X) A)),
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(ARITY X)

(IF (EQUAL X "TRUE")
0

(IF (EQUAL X "NOT")
1

(IF (EQUAL X "IF")
3

(IF (EQUAL X "PLUS")
2

(IF (EQUAL X "f5
11)

a5

(IF (EQUAL X "fr")
amm"NIL")1)))))

(FORM.LSTP X)

(IF (NLISTP X)
(EQUAL X "NIL")
(AND (IF (NLISTP (CAR X))

(SYMBOLP (CAR X))
(IF (EQUAL (CAAR X) "QUOTE")

(AND (LISTP (CDAR X))
(EQUAL (CDDR (CAR X)) "NIL"))

(AND (EQUAL (ARITY (CAAR X))
(LENGTH (CDAR X)))

(FORM.LSTP (CDAR X)))))
(FORM.LSTP (CDR X)))),

(FORMP X)

(FORM.LSTP (LIST X)).

If T is an ordinary history, let MA[T] be the history that

results from adding the metaaxioms for T to T as arbitrary axioms and

let MD[T] be the history that results from adding the metadefinitions

for T to T, in order, as (explicit value preserving) definitions.
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B. Statement and Proof of the Metatheorem

For the remainder of this section, let us make the following

suppositions.

(1) T1 is a constructive, ordinary history,

(2) simp is an explicit value preserving function defined in
T with arity 1,

(3) in MA[T 1] we can prove the formula

*META

(IMPLIES (FORMP X)
(AND (EQUAL (MEANING X ALIST)

(MEANING (simp X) ALIST))

(FORMP (simp X)))), and

(4) T 2 is an ordinary extension of T I.

It is our objective to show that if p is a term of T2, c is a

quotation of p with respect to T2 , and d is the reduction of (simp c),

then d is a quotation of some term q of T2 with respect to T2 and (EQUAL

p q) is a theorem of T2 . Thus, while proving theorems in T 2, we may at

anytime replace a term p of T2 with the dequotation of the reduction of

the application of simp to a quotation of p. First we note a few

lemmas.

Let T 1 .5 be the extension of T, that results from adding (a) the

applications of the shell principle made while extending T, to T2 and

(b) the metadefinitions for T2 as definitions.

We now make a few trivial observations about T. 5 :

(1) In T 1.5 , APPLY may mention functions that are undefined.
Nevertheless, T1 .5 is constructive since T1 is
constructive and in producing the extension we added no
arbitrary axioms.

(2) In T 1.5 , ARITY, FORM.LSTP, and FORMP are explicit value
preserving.

(3) The explicit values of T2 are just the explicit values of
T1 51i.5"

(4) If t is reducible with respect to T1 .5 , then t is
reducible with respect to MD[T 2] and the reduction of t
in T 1.5 is the reduction of t in MD[T 2].
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(5) Finally, c is a quotation of t with respect to T2 if and
only if c is a quotation of t with respect to T 1.5.

We are interested in T1 .5 because, being constructive, it is

consistent and yet has the property proved below. Our interest in

consistency is explained in Section VI, after we have proved the

Metatheorem and discussed its use.

Theorem A. If c is an explicit value with respect to T1 .5, then

the reduction of (FORMP c) in T1 .5 is (TRUE) if and only if for some

term t of T2 , c is a quotation of t with respect to T1 .5.

The proof is by induction on the structure of c.

Base case 1. If the top function symbol of c is not CONS, then the

reduction of (FORMP c) is the reduction of (SYMBOLP c). But the

reduction of (SYMBOLP c) is (TRUE) if and only if for some symbol w, c

is "w". But "w" is a quotation of w.

Base case 2. If c is a term of the form (LIST "QUOTE" d), then the

reduction of (FORMP c) is (TRUE), d is an explicit value, and c is a

quotation of d.

Induction step. Suppose the function symbol of c is CONS but c

does not have the form (LIST "QUOTE" d). Suppose that the reduction of

(FORMP c) is (TRUE). Then for some symbol fn and for some explicit

values cl, ... , cn, c has the form (LIST "fn" c, ... cn), the reduction

of (ARITY "fn") is n, and the reduction of each (FORMP ci) is (TRUE).

By inductive hypothesis, there exist terms tj, ..., tn of T2 such that

ci is a quotation of ti with respect to T1 .5 . By the construction of

the definition of ARITY, the arity of fn is n and c is a quotation of

the term (fn tI ... tn). On the other hand, suppose that for some term

t, c is a quotation of t. t must have the form (fn tj ... tn) and c

must have the form (LIST "fn" a, ... an) for some quotations al,..., an

of t,..., tn. Hence the reduction of (FORMP c) is (TRUE). Q.E.D.

If v1 , ... , vn is a sequence of symbols, then the standard alist

for v1 , ... , vn is the term:
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(LIST (CONS "vl" vl) ... (CONS "Vn" Vn)).

Theorem B. If c is a quotation of t with respect to T2 , t is a

term of T 2, and a is the standard alist for any sequence of variables

that contains all of the symbols that are used as variables in t, then

the following can be proved in MD[T 2]:

(EQUAL (MEANING c a)
t).

Proof. We prove this theorem by induction on the structure of the term

t.

Base Case. If t is a symbol, then c is "t" and (MEANING "t" a) is

(LOOKUP "t" a) which is (CDR (CONS "t" t)) which is t.

Induction step. Suppose t has the form (fn tI ... tn ). If t is an

explicit value and c is (LIST "QUOTE" t), then by the definition of

MEANING, (MEANING c a) is t. If c does not have the form (LIST "QUOTE"

d), then c has the form (LIST "fn" q, ... qn), where each qi is a

quotation of t . Since every variable of any t I is a variable of t, we

have, by inductive hypothesis that for each i, (EQUAL (MEANING qi a)

ti). Because fn is a function symbol used in an axiom of T2 and is not

QUOTE, we have by the definition of MEANING that

(EQUAL (MEANING (LIST "fn" q, ... qn) a)
(fn (MEANING q1 a) ... (MEANYNG qn a))).

Thus we derive

(EQUAL (MEANING (LIST "fn" q, "'" qn) a)
(fn tj ... tn) ) .

Q.E.D.
4

The Metatheorem.

Suppose that
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(1) p is a term of T2.

(2) c is a quotation of p with respect to T2 , and

(3) d is the reduction of (simp c) in T2 .

Then, the reduction of (FORMP d) in T2 is (TRUE), d is
the quotation of some term q of T 2, and in T2 we can prove

(EQUAL p q).

Proof. Since c is a quotation with respect to T2 .of a term of T2.

(FORMP c) reduces to (TRUE) in T 1.5 by Theorem A. Because we can prove

*META in MA[Tj ] and because the metaaxioms of T1 are each theorems of

T1.5. we can prove *META in T1 .5. Detaching the hypothesis of *META, we

can prove in T 1.5 that (FORMP d). The reduction of (FORMP d) in T 1.5 is

either (TRUE) or (FALSE). If it is (FALSE), then T 1.5 is inconsistent.

But we have assumed that T. 5 is consistent since it is constructive.

Thus the reduction of (FORMP d) in T1 .5 is (TRUE) and its reduction in

T2 is (TRUE) also.

By Theorem A there exists a term q of T 2 such that d is a quotation

of q. Let q be the dequotation of d. Let a be the standard alist for a

sequence containing all of the variables in p and q. Since every axiom

(including the definitions) of MA[T1 ] can be proved in MD[T 2], both

*META and (FORMP c) can be proved in MD[T 2]. Detaching the hypothesis

of *META in MD[T 2], we derive that (EQUAL (MEANING c a) (MEANING d a)).

But since (EQUAL p (MEANING c a)) and (EQUAL q (MEANING d a)) by Theorem

B we obtain (EQUAL p q) in MD[T 2 ]. Since MD[T 2] is a definitional

extension of T2 , we can prove (EQUAL p q) in T2. Q.E.D.
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V OUR IMPLEMENTATION OF METAFUNCTIONS

In the next three sections of this paper we describe our efficient

implementation of metafunctions in INTERLISP (6]. Here are the steps

in our description and the proof of the implementation's correctness:

(1) We describe in Section VI how in our theorem-proving

program we represent the terms of our theories with

INTERLISP objects.

(2) Let (list 'QUOTE obj) denote an INTERLISP list of length

two with the INTERLISP atom QUOTE as its first element
and the INTERLISP object obj as its second. In Section

VII, Lemma 18, we demonstrate, under the suppositions

and hypothesis of the Metatheorem, that if (list 'QUOTE
obj) represents some explicit value w of T2 , (FORMP w)

reduces to (TRUE) in MD[T 2] (or, equivalently, in T1.5),
and the INTERLISP machine state correspcr.u, to the

history T2 , then obj represents a term of T 2.

(3) We then demonstrate in Section VII, Lemma 19, that if

the INTERLISP machine state corresponds to any history T
and in that state obj is an INTERLISP object that

represents a term p of T, then (list 'QUOTE obj)

represents a term in T that is a quotation of p with

respect to T.

(4) Finally, in Section VIII we describe how we have

arranged so that if the INTERLISP machine state
corresponds to any theory T and fn is an explicit value

preserving function with respect to T, then stored in the
definition cell of the INTERLISP literal atom lfn is a

routine such that if cl, ... , c are explicit values of T

represented by the INTERLISP objects (list 'QUOTE objl),
... , (list 'QUOTE obJn), and val is the INTERLISP object

computed by applying Ifn to objl, ... , obJn, then (list

'QUOTE val) represents the reduction of (fn cl ... cn).

We are then free to utilize the Metatheorem in the following way.

Suppose that during a proof in T2 we have in hand an INTERLISP object

objc representing some term p of T2 . By Lemma 19, (list 'QUOTE objc)

represents some term c that is a quotation of p. Let objd be the result

of applying Isimp to objc. By our implementation of Ifunctions, (list
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'QUOTE obJd) represents the term d that is the reduction of (simp c).

From the Metatheorem, we know that (FORMP d) reduces to (TRUE). From

Lemma 18, we learn, then, that objd represents some term q of T2 . From

Lemma 19, again, we learn that d is a quotation of q. Finally, from the

Metatheorem, we learn that (EQUAL p q) is a theorem of T 2.

Consequently, we may engage in the typical theorem-prover activities

justified by "substitution of equals for equals," replacing objc with

objd.

The place in our theorem-prover where metafunctions are thus

utilized is described in Section X.

6
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VI INTERLISP REPRESENTATION OF TERMS

In this section, we explain how we represent terms in our theorem-

prover.

A. The Role of Consistency

Before describing our representation, let us first anticipate some

problems we face and explain why we are interested in consistency.

Recall how we use the metafunction simp to simplify a term

represented by the INTERLISP object objc: the theorem-prover executes

the routine Isimp on objc, obtains some INTERLISP object objd as a

result, and uses objd in place of objc.

We find the fact that objd represents a term to be remarkable in

light of all the invariants a data object must satisfy to represent a

term in an efficiently implemented theorem-prover. To appreciate the

subtlety of the situation, consider what might happen when the compiled

INTERLISP code for the theorem-prover begins to operate on objd. If

objd is an INTERLISP list cell, our theorem-proving code will assume

that the car of objd, x, is an INTERLISP literal atom representing a

function symbol and may fetch x's property list (the left half-word of

the location addressed by x) where information about the function is

stored. But what would happen if x were not a literal atom -- for

example, what would happen if it were an INTERLISP number? Then the

machine instruction used to obtain the property list might return an

illegal object whose use could lead the theorem-prover to random,

unpredictable behavior.

For efficiency, we do not check that objd actually satisfies all

the properties the theorem-prover requires of an object representing a

term; so what ensures us that it does? The answer is that we know that

/
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the INTERLISP object obtained by embedding objd in a QUOTE represents a

term, d, and that (FORMP d) reduces to (TRUE). We will prove, in Lemma

18, that objd must therefore represent a term.

How do we know that (FORMP d) reduces to (TRUE)? One's first

reaction is: d is (simp c), (FORMP c) is (TRUE), and *META establishes

(IMPLIES (FORMP c) (FORMP (simp c))). But wait. That argument only

implies that (FORMP d) is provably (TRUE). But our Lemma 18 requires

that it reduce to (TRUE). However, as we argued in the proof of the

Metatheorem, (FORMP d) must reduce to (TRUE) or (FALSE) and were it to

reduce to (FALSE) a constructive theory (namely T 1.5 ) would be

inconsistent.

Let us consider the role of consistency from another point of view.

Recall that we require that *META be proved in a constructive

(consistent) theory, T1 . Suppose we weakened that and permitted it to

be proved in any theory. What would happen if the theory were

inconsistent? One consequence of an inconsistency in T1 is that one

admits a proof procedure that might prove falsehoods. But nothing is

wrong with that state of affairs, for if T1 is inconsistent, one may

indeed prove anything in it. However, something worse happens. Suppose

the inconsistency permits (FORMP (simp c)) to be proved when in fact it

reduces to (FALSE). Then objd will not in fact be an object satisfying

the theorem-prover's restrictions on terms. Consequently, the

application of simp may cause totally unpredictable behavior by the

theorem-prover (e.g., the smashing of disk files, illegal memory

fetches, loss of the day's work, and so on).

Such catastrophic behavior is a far cry from the expectation that

an inconsistent T1 leads to well-behaved proofs of falsehoods. Some

readers may feel that the user of an inconsistent theory deserves even

catastrophic failures. This is an ill-considered position. Mechanical

theorem-provers often deal with inconsistent theories because a standard

proof strategy is to assume the negation of what one desires to prove

and then seek to prove (FALSE). The theory T 2 in which one may apply

simp may be such a theory and cause no catastrophic effects. The moral
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however is that one should not prove the soundness of one's new proof

procedures while in an inconsistent theory.

Finally, we should observe that we could have stated *META so that

(FORMP (simp c)) did not have to be proved in T1 and then could have

implemented a run-time check that objd indeed represents a term. We

then could nave permitted T1 to be inconsistent without catastrophic

consequences. We did not adopt this approach because in most cases the

proof of the FORMP part of *META is straightforward (see Section IX)

and buys efficiency at the mere expense of complicating this paper.

B. Our Subset of INTERLISP

Our objective in this section is to describe how we represent terms

in our theorem-prover in a way that permits the efficient implementation

of the Metatheorem without sacrificing efficiency in ,0ore routine

activities. We describe our representation by exhibiting two INTERLISP

programs. The first determines whether its argument represents a term.

The second returns a conventional representation of the term

represented. We chose to describe our representation with such programs

because INTERLISP provides a very succinct way to describe complicated

INTERLISP data structures.

The INTERLISP definitions we present in this paper and our proofs

about those definitions are made in a vastly simplified version of

INTERLISP akin to Pure Lisp. We do not specify the subset precisely.

However, the subset does have the following properties.

* We make no use of "destructive" operations such as SETQ,

SET, and RPLACA.

* We restrict our attention to INTERLISP structures that are

bnot "circular."

* In establishing the correctness of our mapping between

terms in the theory and INTERLISP objects, we assume we

have an INTERLISP machine with unlimited resources.

The latter assumption permits us to ignore such problems as running out

of list space or exhausting the machine's stack while proving, for

example, that we can represent every explicit value. Of course, we did
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not make this assumption while designing the representation, since the

economical representation of terms is one of our objectives, and our

theorem-prover actually causes errors and aborts the proof attempt when

resources are exhausted. But at the moment we are engaged in the

mathematical exercise of establishing the correctness of a mapping

between terms in our theory and INTERLISP objects and we are using

INTERLISP as a mathematical language to describe those objects.

We assume the reader is familiar with the standard, primitive LISP

routines such as cond, cons, car, cdr, and listp. (MACLISP users: read

"consp" for "listp".)

C. Conventions for Mixing INTERLISP and the Theory

The syntax of INTERLISP expressions is very similar to that of our

theory. Because we will often be referring to functions in our theory

and to INTERLISP functions (henceforth called "routines") in close

proximity, we adopt the following three conventions to demark clearly

the boundary between the two.

First, despite the fact that most INTERLISP routines are spelled in

upper case, we spell them in lower case here. We will use upper case

words to denote functions in our theory. Thus (LENGTH X) is a term in

our theory, while (length x) refers to the value of the INTERLISP

routine length applied to the value of the variable x.

Second, we shall adopt the syntactic convention of writing 'w for

(QUOTE w) when w is an INTERLISP literal atom. Thus, the INTERLISP form

that might be written as:

(COND ((EQ 1 0) (LIST (QUOTE ZERO)))
(T (LIST (QUOTE ADDI) (FN (SUBI I)))))

will here be displayed as

(cond ((eq i 0) (list 'ZERO))

(T (list 'ADDI (fn (subl i))))).

68

iJ



Third, it is often necessary in this paper to refer to characters

obtained by printing certain INTERLISP objects. To indicate the result

of printing the value of an INTERLISP form, we surround the form with

vertical bars. Such an expression is to be understood as denoting the

sequence of characters obtained by printing the value of the enclosed

INTERLISP form (with prin4, using the original read table and decimal

radix). Thus, if we say "We can prove (EQUAL 1(cons 'ZERO NIL)I

(REHAINDER X X))", then we mean "We can prove (EQUAL (ZERO) (REKAINDER X

X))". Of course, to use the vertical bar notation in a context where a

term is expected, we will have to establish that the result of printing

the value of the form denotes a term.

D. Basic INTERLISP Routines

Our representation of terms will involve the following defined

auxiliary INTERLISP routines:

* The routine legal.char.codes takes no arguments and returns
a list, in ascending numerical order, of the integers
mentioned in the definition of LEGAL.CHAR.CODES in Section
III, which are the ASCII codes for the characters that we
permit in symbols.

" The routine illegal.first.char.codes takes no arguments and
returns a list, in ascending numerical order, of the
integers mentioned in the definition of
ILLEGAL.FIRST.CHAR.CODES in Section III, which are the
ASCII codes for the characters that may appear in symbols,
but not first.

* The routine legal.char.code.seq returns T or NIL according
to whether its argument x has or does not have all of the
following properties: (i) (listp x), (ii) for every c, if
(member c x), then (member c (legal.char.codes)), (iii) it
is not the case that (car x) is a member of
(illegal.first.char.codes), and (iv) the cdr of the last
list cell in x is 0.

* The routine unpackO, when given a literal atom x, returns a
list of the ASCII codes of the characters in the "print
name" of x, in the order in which the characters occur in
the print name, and terminating in a 0 instead of a NIL.
(The "print name" of a literal atom is the sequence of
characters produced when the atom is printed. Thus,
(unpackO 'ABC) is a list that prints as (65 66 67 • 0).)
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* The routine packO, when given an object x satisfying

(legal.char.code.seq x), returns the unique INTERLISP
literal atom atm such that (unpackO atm) is x.

* The routine symbolp returns T or NIL according to whether

its argument represents a symbol in our logic. The
definition of symbolp is:

(symbolp (lambda (x)

(and (litatom x)

(legal.char.code.seq

(unpackO x))))).

Note that if (symbolp x) holds, then x is a literal atom and its

print name is a legal.char.code.seq. If (symbolp x) holds, (packO

(unpackO x)) is x. Furthermore, if (legal.char.code.seq seq) holds,

then (unpackO (packO seq)) is equal to seq and (symbolp (packO seq))

holds. These are the basic properties required of symbolp, packO,

unpackO, and legal.char.code.seq. INTERLISP contains literal atoms for

which packO and unpackO are inverses but which we do not use as symbols.

For example, there is one whose print name is 1A2. We could have

defined legal.char.code.seq to check for precisely the syntax of those

objects for which packO and unpackO are inverses, but that would have

made its definition far more complicated, for while IA2 is such an

object, 1E2 is not (it is 1.Ox10 2 = 100.0).

As the user of our theorem-prover adds definitions, shells, and

other kinds of axioms, our theorem-prover naturally changes the state of

the INTERLISP machine.

* The routine arity, of one argument x, is defined so that if

x is a symbol which is used as a function symbol in some
axiom of the history represented by the current state of
INTERLISP, then arity returns an INTERLISP integer
representing the number of arguments that x takes.
Otherwise, (arity x) is NIL.

* The routine shell.state, of no arguments, returns an alist

which incapsulates information about the uses of the shell

principle in the construction of the history represented by
the current state of INTERLISP. Each member of the list
has a shell constructor function symbol or a bottom object

function symbol as its car. The cdr is a list whose length
is the number of arguments of the function symbol. Each
element of the cdr encodes the type restrictions placed on
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the corresponding argument to the constructor function.
Recall that each type restriction for a shell can be
expressed as a requirement that the corresponding argument
either be recognized by one of a finite collection of shell
recognizers or else be recognized by none of a finite
number of shell recognizers. Thus, it would be sufficient
if each element of the cdr were either of the form (ONE-OF
• r) or (NONE-OF . r), where r was a list of recognizers.
However, for convenience we define r to be the list of all
constructor and bottom object function symbols recognized
by the recognizers in question.

* The routine addl.nest takes a nonnegative integer x as its

argument and it returns an object that prints as (ZERO) for
0, (ADD1 (ZERO)) for 1, (ADDI (ADDI (ZERO))) for 2, and so
on. Its definition is

(addl.nest

(lambda i)
(cond ((equal i 0) (list 'ZERO))

(T (list 'ADDl (addlhnest (subI i))))))).

* The routine bminus, if given an argument representing an

integer x, returns a INTERLISP representation of the
negative of x.

* The routine baddl, if given an argument representing an

integer x, returns a INTERLISP representation of x+l.

* The routine plistp returns T or NIL according to whether or

not its argument is a (possibly empty) list whose final cdr

is NIL. Its definition is

(plistp (lambda (x)
(cond ((nlistp x) (eq x NIL))

(T (plistp (cdr x)))))).

E. Global Variables

For our representation of terms, we have assigned distinct values

to three INTERLISP global variables It, If, and Isqm. Each value is an

INTERLISP literal atom, and none of the values represents a symbol in

the logic (i.e., (symbolp It), (symbolp If) an (symbolp lsqm) are all
NIL). The role of these variables is explained below. By choosing

names that begin with digits we are guaranteed that these INTERLISP
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variables never have the same names as variables in our logic. This

plays a minor role in the efficient compilation of explicit value

preserving functions.

F. The Definition of Terms

Roughly speaking we shall represent variables as symbolps and

function applications as lists in which the car is the function symbol

and the cdr is the list of the appropriate number of argument terms.

However, we wish to encode explicit value terms efficiently. For

example, we prefer to represent the explicit value term

(CONS (PACK (CONS 78 (CONS 79 (CONS 84 0))))
(CONS (PACK (CONS 80 0))

(PACK (CONS 78 (CONS 73 (CONS 76 0)))))),

which may be abbreviated by:

(LIST "NOT" "P")

with the INTERLISP list constant that prints as (QUOTE (NOT P)). There

are two reasons: we consume much less space, and if constants in the

theory are represented efficiently by INTERLISP constants then we can

choose to represent terms in our program by INTERLISP constants which

simultaneously represent constants in our theory and facilitate the

efficient application of metafunctions to formulas.

For example, we can represent some NUMBERPs and NEGATIVEPs by

INTERLISP integers, some LITATOMs by INTERLISP literal atoms, and some

LISTPs by INTERLISP lists. Of course, we cannot use the INTERLISP

literal atom 'P to represent both the variable P and the explicit value
b(PACK (CONS 80 0)). So we use 'P to represent the variable P and the

value of (list 'QUOTE 'P) to represent (PACK (CONS 80 0)).

Similarly, if the value of (list 'QUOTE objl) represents some

explicit value term tj and the value of (list 'QUOTE obJ 2 ) represents

some explicit value term t2, then the value of (list 'QUOTE (cons objl

obJ 2 )) represents the explicit value term (CONS t1 t2 ). To obtain the
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CAR of (CONS t1 t2 ) from its representation, we apply car to (cons obj,

obJ 2 ). To obtain the UNPACK of (PACK (CONS 80 0)) from its

representation, we apply unpackO to to 'P. However, we must address

three problems.

The first problem concerns the precise choice of our representation

of LITATOMs. The reason LITATOMs must be represented efficiently is

that they are used by FORMP to stand for function and variable symbols.

Thus, the internal representation of a LITATOM satisfying SYMBOLP must

be an INTERLISP object the theorem-prover can use as a function or

variable symbol. But to implement a theorem-prover efficiently one's

function and variable symbols should be distinguishable by eq (in one

machine instruction) and have property lists. The obvious candidates

are literal atoms. So certain LITATOMs are represented by INTERLISP

literal atoms. But for theoretical simplicity we allow a LITATOM to be

constructed from any object (e.g., (PACK 1200) is a LITATOM in the

theory), while INTERLISP requires that literal atoms be constructed only

from lists of ASCII codes so that they are "printable." To represent

the theory's "unprintable" LITATOMs we will use the structures described

below for user-defined shells. Thus, there are two distinct ways

LITATOMs are represented, but any given LITATOM will be represented in

only one of the ways, depending on whether it is a SYMBOLP.

The second problem is that while certain shell constants in the

theory (e.g., some NUMBERPs, LITATOMs, and LISTPs) have obvious

INTERLISP representatives, others (e.g., (TRUE), (FALSE), and user-

defined shells such as stacks or triples) do not. We could use the

INTERLISP "user data type" facility to declare a new INTERLT SP type for

each of these unusual types in the theory. But this is unacceptable

because (a) every user data type is initially allocated 512 words of

storage, regardless of how many items of that type are required, (b)

having additional data types in use slows down garbage collections, (c)

the efficiently compiled and widely used INTERLISP routine equal does

not work on user data types, and (d) INTERLISP user data types do not

print out or read in conveniently.
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We shall therefore encode user-defined shell constants as INTERLISP

list structures containing the name of the constructor (or bottom

object) and the n-tuple of objects representing the explicit value

arguments. But such a list structure could be confused with the

representation of a LISTP containing n+l objects. To avoid ambiguity,

we cons the value of lsqm (which stands for "shell quote mark") onto the

front of the structure. This marking scheme avoids ambiguity because

Isqm is not the internal representation of any explicit value -- in

particular it does not satisfy symbolp and so does not represent a

LITATOM -- so a list with Isqm as its car could not possibly represent a

LISTP whose CAR was represented by Isqm. For example, if TRIPLE is a

user-defined shell constructor, then the explicit value (TRIPLE I (PACK

(CONS 80 0)) 2) is represented by the value of (list Isqm 'TRIPLE I "P

2), embedded in a QUOTE form.

We could represent (TRUE) and (FALSE) similarly -- for example,

(TRUE) could be represented by the value of (list Isqm 'TRUE), embedded

in a QUOTE form -- but that would be very inefficient because (TRUE) and

(FALSE) are constantly tested against in tight loops in the theorem-

prover. Instead, we represent (TRUE) and (FALSE) with (the values of)

the variables It and If, embedded in QUOTE forms. These values cannot

be mistaken as representing LITATOMs in the theory even though they are

literal atoms in INTERLISP.

The third problem is the finite limitations imposed by INTERLISP

(and all programming languages). For example, no INTERLISP literal atom

can have more than 125 characters, nor can any integer require more than

36 bits to represent it. In this paper we pretend INTERLISP imposed no

such limits. To ensure the correctness of our program, we have designed

b it to cause errors (which result in the abortion of any proof attempt)

when the finite limitations of INTERLISP are reached. Thus, for

example, we use our own baddl routine for adding one to an integer --

and causing an error if the result is unrepresentable -- rather than use

the built-in routine addi which returns an inaccurate answer on

overflow.
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We now make the foregoing sketch precise. An INTERLISP object obj

is a called an INTERLISP term if (termp obj) is non-NIL. Below we

define termp and its subroutine evg (for "explicit value guts") which

recognizes the INTERLISP objects that may be embedded in QUOTEs to

represent explicit value terms.

(termp
(lambda (x)

(cond
((nlistp x)

(symbolp x))
((eq (car x)

'QUOTE)
(and (listp (cdr x))

(null (cddr x))
(evg (cadr x))))

(T (and (plistp (cdr x))
(equal (length (cdr x))

(arity (car x)))
(for z in (cdr x) always (termp z))))))).

We define (evg y) so that if y is an INTERLISP object that, when

embedded in a QUOTE, represents some explicit value term v, then (evg y)

is the top-level function symbol of v. Otherwise, (evg y) is NIL.

A
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(evg
(lambda (y)
(cond ((nlistp y)

(cond ((fixp y)
(cond ((lessp y 0) (quote MINUS))

((equal y 0) (quote ZERO))
(T (quote ADDI))))

((eq y It)
(quote TRUE))

((eq y If)
(quote FALSE))
((symbolp y)
(quote PACK))
(T NIL)))

((eq (car y) lsqm)
(cond
((and (listp (cdr y))

(plistp (cdr y))
(equal (length (cddr y))

(arity (cadr y)))
(assoc (cadr y)

(shell.state))

(for z in (cddr y) always (evg z))
(for restriction in (cdr (assoc (cadr y)

(shell.state)))

as arg in (cddr y) always
(cond ((eq (car restriction) 'ONE.OF)

(member (evg arg)

(cdr restriction)))
(T (not (member (evg arg)

(cdr restrictimn))))))
(cond
((eq (cadr y) (quote PACK))
(not (legal.char.code.seq (caddr y))))

((eq (cadr y) (quote MINUS))
(equal (caddr y) 0))

(T (not (member (cadr y)

(quote (ADD1 ZERO CONS)))))))
(cadr y))

(T NIL)))
((and (evg (car y))

(evg (cdr y)))
(quote CONS))

(T NIL))))

The puzzled reader should be reminded that termp and evg are only

used to say precisely how we represent terms. The theorem-prover only

/
76



calls termp once when a term is submitted to it by the user. Internal

subroutines know what terms look like -- indeed, it is to make these

internal subroutines efficient that termp is so complicated. As for the

correctness of metafunctions, all we have to prove is that when given

FORMPs they return FORMPs. The careful reader will note that FORMP is

considerably simpler than termp -- in particular there is nothing

corresponding to the ghastly evg. The fact that a QUOTEd evg can be

proved to be a FORMP if and only if the evg itself is a termp is what we

have to prove once and for all as Lemma 18.

G. Solidification

We now specify what term in the theory is represented by a given

INTERLISP term. Given an INTERLISP term x, the routine s (for

"solidify") returns an INTERLISP object that when printed is the term

represented by x, displayed without any abbreviations. the subroutine

sevg ("solidify explicit value guts") computes the explicit value term

represented by an evg object. These two routines are never used by the

theorem-prover. They are defined only to make precise the map from

INTERLISP terms to terms in the theory.

(s
(lambda x)
(cond
((nlistp x)
x)
((eq (car x) 'QUOTE)
(sevg (cadr x)))
(T (cons (car x)

(for z in (cdr x) collect (s z)))))))
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(sevg
(lambda (y)

(cond
((nlistp y)

(cond
((litatom y)

(cond
((eq y It)

(quote (TRUE)))
((eq y If)

(quote (FALSE)))
(T (list (quote PACK)

(sevg (unpackO y))))))
((lessp y 0)

(list (quote MINUS)
(addl.nest (bminus y))))

(T (addl.nest y))))
((eq (car y)

Isqm)

(cons (cadr y)
(for z in (cddr y) collect (sevg z))))

(T (list (quote CONS)
(sevg (car y))
(sevg (cdr y)))))))

H. Some Example INTERLISP Terms and Solidifications

Suppose that the value of Isqm is the INTERLISP literal atom lSQM

(which could not represent a symbol because it has a digit as its first

character). Below we exhibit, in the left-hand column, some sample

INTERLISP objects (as printed by prin4) and, in the right-hand column,

the corresponding term in our theory. In the taole we have printed some

of the ADD1-nests as integers even though I(s x) I never actually
contains integers.

7

78

i-



x (s x) I

(PLUS (QUOTE 1) X) (PLUS (ADDI (ZERO)) X)

(FN (QUOTE (A B))) (FN (CONS (PACK (CONS 65 0))

(PACK (CONS 66 0))))

(QUOTE (ISQM PACK 2)) (PACK (ADDI (ADDI (ZERO))))

(QUOTE 0) (ZERO)

(QUOTE (QUOTE 0)) (CONS

(PACK

(CONS 81

(CONS 85

(CONS 79

(CONS 84 (CONS 69 0))))))

(CONS (ZERO)

(PACK

(CONS 78

(CONS 73 (CONS 76 0))))))

(ZERO) (ZERO)

(QUOTE (ZERO)) (CONS

(PACK

(CONS 90
(CONS 69

(CONS 82 (CONS 79 0)))))

(PACK

(CONS 78 (CONS 73 (CONS 76 0)))))

Displayed with some abbreviations, the last four entries in the

table are:

x 1(s x) l

(QUOTE 0) (ZERO)

(QUOTE (QUOTE 0)) (LIST "QUOTE" (ZERO))

(ZERO) (ZERO)

(QUOTE (ZERO)) (LIST "ZERO")
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These examples are included to encourage the reader to think about

our claim that if obj represents the term t, ti~en the result of

embedding obj in a QUOTE represents a term whose MEANING, under t~he

standard alist for the variables in t, is t. Note that (QUOTE 0)

represents the term (ZERO); the result of embedding (QUOTE 0) in a QUOTE

is (QUOTE (QUOTE 0)), which represents the term (LIST "QUOTE" (ZERO)).

As claimed, the MEANING of (LIST "QUOTE" (ZERO)) is (ZERO). But the

INTERLISP list that prints as (ZERO) is also a termp that represents

(ZERO). The result of embedding (ZERO) in a QUOTE is (QUOTE (ZERO)),

which represents the term (LIST "ZERO"). (LIST "ZERO") and (LIST

"QUOTE" (ZERO)) are two distinct explicit values and are thus not EQUAL.

Nevertheless, the MEANING of (LIST "ZERO") is (ZERO).
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VII PROOFS OF THE LEMMAS

A. Lemmas I Through 7

The first important lemma is Lemma 4, which establishes that every

INTERLISP term actually represents a term in the logic. Lemma 4

guarantees that 1(s obj)l is a term in our theory when (termp obj) is

non-NIL. Lemma 5 states that if obj is an INTERLISP term, then (list

'QUOTE obj) is an INTERLISP term.

We will first state and prove a very simple lemma as a warm-up

exercise.

Lemma I ("addl.nest of an integer is a term"). If i is a

nonnegative INTERLISP integer, then 1(addl.nest i) I is a term.

First consider an example. If i is the INTERLISP integer 3 then

i(addl.nest i)I is the explicit value term (ADDI (ADDI (ADDI (ZERO)))).

Proof. We prove Lemma I by induction on i.

Base case. It i is 0, (addl.nest i) returns the value of (list

'ZERO), which prints as (ZERO).

Induction step. If i is an integer greater than 0, we may

inductively assume that (addl.nest (subl i))l is a term. Then

l(addl.nest i)j is 1(list 'ADDI (addl.nest (subl i)))l which is (ADD1

l(addl.nest (subl i))I), which is a well-formed term since ADDI is a

function symbol of one argument and the argument, l(addl.nest (subl

i))I, is a term by inductive hypothesis. Q.E.D.

Lemma 2 ("sevg of a list of integers is a term"). If obj is an

INTERLISP list of nonnegative integers whose final CDR is 0, then I(sevg

obj)l is a term.

Consider another example. If obj is an INTERLISP list which prints

as

(1 2 . 0),
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then I (sevg obj) I is the term

(CONS (ADD1 (ZERO)) (CONS (ADD1 (ADDI (ZERO))) (ZERO))),

or more succinctly, using the abbreviations of the theory,

(CONS I (CONS 2 0)).

Proof. The proof is by induction on the size of obj.

Base case. If obj is not . cons, then it must be 0. But I(sevg

0)1 is 1(addl.nest 0)1, whic:h is a term by Lemma I ("addl.nest of an

integer is a term").

Induction step. If obj is a cons, then (car obj) is a nonnegative

integer and I(sevg (cdr obj))l is a term, by inductive hypothesis.

Since (car obj) is not Isqm (because Isqm is not an integer),

I(sevg obj)l = I(list 'CONS (sevg (car obj)) (sevg (cdr obj)))l

= I(list 'CONS (addl.nest (car obj))
(sevg (cdr obj)))l

= (CONS 1(addl.nest (car obj))I

I(sevg (cdr obj))I),

which is a term since CONS is a function symbol of two arguments and

both arguments in the CONS-expression above are themselves terms by

Lemma I ("add.nest of an integer is a term") and our induction

hypothesis. Q.E.D.

Lemma 3 ("sevg of an evg is a term'). If (evg obj) is non-NIL,

then I(sevg obj' I is a term. (In fact, I (sevg obj)l in this case is an

explicit value term, but we will prove that later.)

Proof. We induct on the size of obj.

Base case. Suppose that obj is not a cons. By the definition of

evg, obj must therefore be an integer (i.e., recognized by fixp), It,

If, or a symbolp. (a) If obj is an integer, I(sevg obj) I is either

I (addl.nest obj) or (MINUS I (addl.nest (bmiinus obj I), both of which

are terms by Lemma I ("addl.nest of a integer is a term"). (b) If obj
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is It or If, then I(sevg obj)l is (TRUE) or (FALSE), both of which are

terms. (c) If (symbolp obj) then we also have (litatom obj) and thus

I(sevg obj)I is (PACK I(sevg (unpackO obj))I). But since (unpackO obj)

is an INTERLISP list of nonnegative integers whose final cdr is 0, Lemma

2 ("sevg of a list of integers is a term") tells us I(sevg (unpackO

obj))I is a term. Hence (PACK I(sevg (unpackO obj))fl is a term.

Induction step. Suppose obj is a cons. We inductively assume that

I(sevg obj')l is a term whenever obj' is an INTERLISP object such that

(evg obj') holds and obj" is smaller than obj (as measured by the

INTERLISP routine count). (a) if the car of obj is lsqm, then, by our

(evg obj) hypothesis, obj must have the form (Isqm fn arg1 ... argn),

where fn is a constructor function symbol or bottom object function

symbol and n is the arity of fn and (evg argi) holds for each arg i.

I(sevg obj)l is (fn I(sevg argl)i ... I(sevg argn)I), which is a term by

the induction hypothesis. (b) If car of obj is not Isqm, then we have

(evg (car obj)) and (evg (cdr obj)) and therefore, by our induction

hypotheses, I(sevg (car obj))J and I(sevg (cdr obj))l are terms. But

I(sevg obj)l is (CONS I(sevg (car obj))l I(sevg (cdr obj))I), which is

also a term. Q.E.D.

Lemma 4 ("s of a termp is a term"). If (termp obj), then (s

obj)i is a term.

Proof. We induct on the size of obj.

Base case. Given that obj is not a cons and (termp obj) is non-

NIL, we know (symbolp obj). Thus, lobji (i.e., the print name of obj)

is a character sequence satisfying the restrictions on variable symbols

in our logic. But I(s obj)l is IobjI and thus a term (in particular, a

variable).

Induction step. Suppose obj is a cons. (a) If (car obj) is

'QUOTE, then (termp obJ) implies that obj must have the form (QUOTE

obj') where (evg obj'). I(s obj)l is then I(sevg obj')I, which is a

term by Lemma 3 ("sevg of an evg is a term"). (b) If (car obj) is not

'QUOTE, then obj has the form (in arg I ... arg n ) where n is the
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nonnegative arity of the function symbol fn and (termp argi) for each i.

I(s obj)l is (fn I(s argl)l ... I(s argn)l), which is a term since each

I(s argi)l is inductively a term. Q.E.D.

Lemma 5 ("QUOTEd term is a term"). If (termp obj), then (termp

(list 'QUOTE obj)).

Proof. By the definition of termp, (termp (list 'QUOTE obj)) is

equivalent to (evg obj). Thus it suffices to show that (termp obj)

implies (evg obj).

The proof is by induction on the size of obj.

Base case. Suppose obj is not a cons. Then from (termp obj), we

have (symbolp obj), which guarantees (evg obj).

Induction step. Suppose obj is a cons.

(a) If (car obj) is 'QUOTE, then, by (termp obj), we have (listp

(cdr obj)), (evg (cadr obj)) and that (cddr obj) is NIL. Since (car

obj) is not Isqm, (evg obj) is equivalent to the conjunction of (evg

(car obj)) and (evg (cdr obj)). The first is immediate. The second is

equivalent to the conjunction of (evg (cadr obj)) and (evg (cddr obj))

(both of which are also immediate) provided (cadr obj) is not Isqm. But

(cadr obj) cannot be lsqm because (evg (cadr obj)) is non-NIL, while

(evg lsqm) is Nil, (because lsqm is a literal atom, distinct from It and

If, and not a symbolp).

(b) If (car obj) is not 'QUOTE, then obj has the form (fn arg,

argn), where n is the length of (cdr obj), (arity fn) is n, and

(termp argi) for each i. Provided neither fn nor any arg i is Isqm, (evg

obj) is equivalent to the conjunction of (evg fn), (evg argl), ... , (evg

argn), and (evg Nil,). But (evg fn) tollows from the fact that (arity

fn) is (length (cdr obj)), which is a nonnegative integer, and (arity

fn) is a nonnegative integer only if (symbolp fn). Each (evg argi)

follows from our inductive hypotheses and (termp argi). (evg NIL) is

immediate. Thus, we must show that neither fn nor any arg i is Isqm.

But since (evg lsqm) is NIL, this must be the case. Q.E.D.
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Lemma 6 ("unique representation of explicit values"). For each

explicit value term t, there exists (modulo INTERLISP equality) exactly

one INTERLISP object v such that (evg v) is non-NIL and I(sevg v)I is t.

We do not prove this lemma here. The proof, by induction on the

structure of explicit values, is tedious but straightforward. We

indicate how the proof goes by considering the case for an explicit

value of the form (CONS t1 t2 ). By induction hypothesis, the explicit

values t1 and t2 are uniquely represented, say by v, and v2 . The

existence part of the proof is easy. The evg (cons v, v2 ) represents

(CONS t1 t2 ): since v, is an evg, it is not lsqm and so I(sevg (cons v1

v2))J is (CONS i(sevg vl)l I(sevg v2)1) which is (CONS tl t2 ). The

uniqueness argument is more tedious. Suppose that for some evg v not

equal to (cons v1 v2 ), I(sevg v)I is (CONS t1 t2). Consider the

structure of v. Suppose v is not a list. Then the function symbol of

I(sevg v)J is either TRUE, FALSE, PACK, MINUS, ADDI, or ZERO,

contradicting the assumption that it is CONS. Suppose v is a list whose

car is lsqm. Then the cadr of v must be CONS since the function symbol

of I(sevg v) is CONS. But (evg v) requires that the cadr of such a v

not be CONS, so such a v is not an evg. Thus, v must be a list whose

car is not Isqm. But then its car must be an evg representing t1 and

its cdr an evg representing t2. v, and v2 are the only evgs with that

property. Thus, v is equal to (cons v, v2 ).

In general, the key to the uniqueness argument is that evg checks

that Isqm is not used to "counterfeit" terms that have more efficient

representations. Thus, (list Isqm 'CONS v, v2 ), the counterfeit

representation of (CONS tl t2 ), fails to be an evg. Similarly, evg

checks that Isqm is not used to represent ADDI terms, (ZERO), PACK terms

of LEGAL.CHAR.CODE.SEQs, or MINUS terms other than (MINUS 0).

We next prove a result similar to buv stronger than Lemma 3 ("sevg

of an evg is a term") .

Lemma 7 ("sevg of an evg is an explicit value"). If (evg v) then

I (sevg v) is an explicit value term.
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Proof. By Lemma 3 we know I(sevg v)J is a term. To prove that it

is an explicit value term we must prove that (i) there are no variables

in it, (ii) there are no function symbols other than TRUE, FALSE, and

shell constructor and bottom object function symbcls, and (iii) if the

term t occurs as the ith argument to some constructor function const in

I(sevg v) J, then the function symbol of t must be one of those

recognized (or, depending on the type restriction, not recognized) by

the finite set of recognizers specified for the ith component of const.

The proof of each of these facts is by induction on the size of v.

Proving that j(sevg v)J contains no variables is immediate from

inspection of sevg and one's inductive hypotheses. Proving that all the

function symbols are as specified by (ii) is immediate from inspection

of sevg and induction except for the case where v is a list whose car is

lsqm. In this case (sevg v) is (cons (cadr v) ...) and so might appear

to have an arbitrary function symbol when printed. But (evg v) ensures

us that (cadr v) is a shell constructor or bottom object, since it must

be found on (shell.state). As for (iii), there are three interesting

cases: I(sevg v)j is an (ADDI ... ), a (MINUS ... ), or a user-defined

shell constructor term. No other primitive shells have type

restrictions on their components. A trivial case analysis shows that

addl.nest produces only terms satisfying NUMBERP, so the first two cases

are immediate. When the third case obtains, the car of v is lsqm and we

must prove that the function symbol of each of the arguments satisfies

the corresponding type restriction. But (evg v) checks precisely that

by insuring that the function symbol of each argument is a member of

(or, depending on the type restriction, not a member of) the finite set

specified by (shell.state). Q.E.D.

B. Lemmas 8 Through 18

We now prove a series of lemmas that let us move from reductions in

a history to computations in INTERLISP. Our main goal in this section

is Lemma 18.

86

°-



Lemma 8 ("LISTP iff listp and not 1sgm"). If (evg x), then the

reduction of (LISTP I(sevg x)I) is (TRUE) if and only if (listp x) is

non-NIL and (car x) is not Isqm.

Proof. If (listp x) is NIL or (car x) is Isqm, then the function

symbol of I(sevg x) l is either TRUE, FALSE, a bottom object, or a shell
constructor other than CONS. Thus, the reduction of (LISTP I(sevg x)I)

is (FALSE). To prove the lemma in the other direction, suppose (listp

x) is non-NIL and (car x) is not Isqm. Then (LISTP I(sevg x)l) is

(LISTP (CONS i(sevg (car x))l I(sevg (cdr x))I)), whose reduction is

(TRUE). Q.E.D.

Lemma 9 ("CDR is cdr when not Isqm"). If (evg x) and (listp x)

and the car of x is not Isqm, then the reduction of (CDR j(sevg x)I) is

I(sevg (cdr x))I.

Proof. The proof is trivial. Under the conditions given,

(CDR I(sevg x)I)

is

(CDR (CONS I(sevg (car x))I I(sevg (cdr x))I)),

whose reduction is I(sevg (cdr x))I. Q.E.D.

We state, without proof, the analogous lemma for CAR and car.

Lemma 10 ("CAR is car when not lsqm"). If (evg x) and (listp x)

and the car of x is not Isqm, then the reduction of (CAR I(sevg x)I) is

I(sevg (car x))I.

Lemma 11 ("EQUAL iff identical") If (evg x) and (evg y) then the

b reduction of (EQUAL I(sevg x)J I(sevg y)I) is (TRUE) if and only if x

and y are equal.

Proof. Recall that the reduction of the equation of two explicit

values is (TRUE) if and only if the two terms are identical. In

addition, by Lemma 7 ("sevg of an evg is an explicit value"), I(sevg x)I
and I(sevg y)I are both explicit values.
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Suppose the reduction of (EQUAL 1(sevg x) I I(sevg y) I) is (TRUE).
Then I(sevg x) i and I(sevg Y)I are identical. So x and y are equal by

Lemma 6 ("unique representation of explicit values"). In the other

direction, the reduction is immediate. Q.E.D.

Lemma 12 ("LEGAL.CHAR.CODE.SEQ iff legal.char.code.seg"). If (evg

v), then the reduction of (LEGAL.CHAR.CODE.SEQ j(sevg v)i) is (TRUE) if

and only if (legal.char.code.seq v) is non-NIL.

Recall that LEGAL.CHAR.CODE.SEQ checks that its argument is a LISTP

whose first member is not in (ILLEGAL.FIRST.CHAR.CODES), is a subset of

(LEGAL.CHAR.CODES). and terminates in a 0. legal.char.code.seq checks

the same things at the level of INTERLISP.

We do not prove this lemma here. However, we will indicate how the

proof goes. Our proof involves the following two lemmas:

(I) If (evg c), (evg x), and every element of x is an evg,
then the reduction of (MEMBER j(sevg c)j I(sevg x)I) is
(TRUE) if and only if (member c x) is non-NIL.

(2) If (evg x), (evg y), and y is a lists of evgs, then the
reduction of

*a (AND (SUBSETP I(sevg x)i I(sevg y)I)

(EQUAL (ZERO)
(IF (LISTP I(sevg x)I)

(CDR (LAST j(sevg x)i))
I(sevg x)j)))

is (TRUE) if and only if

*b (and (for c in x always (member c y))

(equal 0
(cond ((listp x) (cdr (last x)))

(t x)))).

To use these two lemmas in the proof of Lemma 12

("LEGAL.CHAR.CODE.SEQ iff legal.char.code.seq") it is only necessary to

observe that (LEGAL.CHAR.CODES) and (ILLEGAL.FIRST.CHAR.CODES) reduce to

I(sevg (legal.char.codes))j and I(sevg (illegal.char.codes))i.

Furthermore, since both (legal.char.codes) and

(illegal.first.char.codes) are lists of integers, they are also lists of

evgs.
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Lemma 13 ("SYMBOLP iff symbolp"). If (avg v) then the reduction of

(SYMBOLP I(sevg v)j) is (TRUE) if and only if (symbolp v) is non-NIL.

Proof. If the reduction of the SYMBOLP expression is (TRUE), we

know the reduction of (LITATOM I(sevg v)I) is (TRUE) and that the

reduction of (LEGAL.CHAR.CODE.SEQ (UNPACK I(sevg v)l)) is (TRUE). But

by sevg and evg, if the reduction of the LITATOM expression is (TRUE)

then either v is a literal atom and (legal.char.code.seq (unpackO v))

holds so (symbolp v) holds, or else v is a list whose car is 1sqm, whose

cadr is PACK, and whose caddr is rejected by legal.char.code.seq. We

can prove the latter cannot happen, because for such a v (UNPACK j(sevg

v)I) is k(sevg (caddr v))J and hence the reduction of

(LEGAL.CHAR.CODE.SEQ j(sevg (caddr v))I) is (TRUE), and so Lemma 12

("LEGAL.CHAR.CODE.SEQ iff legal.char.code.seq") assures us that

(legal.char.code.seq (caddr v)) is non-NIL, contradicting the hypothesis

that (caddr v) was rejected by legal.char.code.seq. The argument in the

other direction is similar. Q.E.D.

Lemma 14 ("if PLISTP, then plistp and list of evgs"). If (evg x)

and the reduction of (PLISTP I(sevg x) ) is (TRUE), then (plistp x) is

non-NIL and every element of x is an evg.

The definition of the function PLISTP, from (1], is:

Definition.
(PLISTP L)

(IF (LISTP L)
(PLISTP (CDR L))
(EQUAL L "NIL")).

Observe that if c is reducible and (FORM.LSTP c) reduces to (TRUE), then

so does (PLISTP c). We introduce PLISTP because only to make it easier

to establish later that if (FORM.LSTP I(sevg x)I) reduces to (TRUE) then

x is a proper list of evgs. We now prove Lemma 14.

Proof. We induct on x.

Base case. If x is not a cons, then the ceduction of (LISTP I(sevg

x)I) is (FALSE) by Lemma 8 ("LISTP iff listp and not lsqm"). Since the

89

j JI



reduction of (PLISTP n(sevg x)I) is (TRUE), (EQUAL "NIL" I(sevg x)I)

must reduce to (TRUE), which implies x is NIL by Lemma 11 ("EQUAL iff

identical"). But if x is NIL, then our conclusion holds.

Induction step. If x is a cons, inductively assume that if the

reduction of (PLISTP I(sevg (cdr x))I) is (TRUE), then (plistp (cdr x))

is non-NIL and every element of (cdr x) is an evg. We must show (plistp

x) and that every element of x is an evg. We first observe that (car x)

cannot be Isqm, for if it were, (LISTP I(sevg x)j) would reduce to

(FALSE) by Lemma 8 ("LISTP iff listp and not Isqm") and so the reduction

of (EQUAL "NIL" j(sevg x)I) would have to be (TRUE), but is not, by

Lemma 11 ("EQUAL iff identical") and the observation that NIL is not

identical to x. So, we have that the reduction of (LISTP j(sevg x)I) is

(TRUE) and thus the reduction of (PLISTP (CDR I(sevg x)l)) is also. But

then the reduction of (PLISTP I(sevg (cdr x))I) is (TRUE) by Lemma 9

("CDR is cdr when not lsqm"), so we get, from our induction hypothesis,

that (plistp (cdr x)) is non-NIL and every element of (cdr x) is an evg.

The former guarantees that (plistp x) is non-NIL, and the latter

guarantees that every element of x is an evg if we can establish that

(car x) is an evg. But this follows from (evg x), given that (car x) is

not 1sqm. Q.E.D.

Lemma 15 ("LENGTH is length when list of evgs"). If (evg x) and x

is a list of evgs, then the reduction of (LENGTH I(sevg x)I) is I(sevg

(length x))I.

The proof, by induction on x, is omitted because it is so similar

to the proof of the preceding Lemma 14.

For the remainder of this section, let us assume that the state of

the INTERLISP machine (in particular, the definitions of arity and

shell.state) reflect the history T2 of the Metatheorem.

Lemma 16 ("ARITY is arity"). If (symbolp x), then the reduction in

both T 1 .5 and MD[T 2] of (ARITY I(sevg x)I) is I(sevg (arity x)) i .

Proof. The function symbols TRUE, NOT, IMPLIES, PLUS, f5 , -9 fm

are, by definition, the only functions mentioned iin the axioms of T2 .
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If x is one of these symbols, the theorem holds by the definitions of

arity and ARITY. If x is not one of these symbols, both are "NIL".

Q.E.D.

Lemma 17 ("if FORMP.LSTP. then list of FORMPs"). If x is a proper

list of evgs and the reduction of (FORMP.LSTP I(sevg x)I) in T2 is

(TRUE), then for each element arg in x, the reduction of (FORMP I(sevg

arg) I) is (TRUE).

Proof. The proof is by induction on x.

Base case. If x is not a cons, then the reduction of (LISTP I(sevg

x)j) is (FALSE) by Lemma 8 ("LISTP iff listp and not lsqm") so by our

FORMP.LSTP hypothesis we know the reduction of (EQUAL I(sevg x)l "NIL")

is (TRUE), so x must be NIL by Lemma 6 ("unique representation of

explicit values") and our conclusion is vacuously true.

Induction step. If x is a cons, we can inductively assume that if

(cdr x) is a proper list of evgs and the reduction of (FORMP.LSTP I(sevg

(cdr x))j) is (TRUE), then for every arg in (cdr x), the reduction of

(FORMP I(sevg arg)I) is (TRUE). We must prove that if x is a proper

list of evgs and the reduction of (FORMP.LSTP I(sevg x)I) is (TRUE),

then for each element arg of x, the reduction of (FORMP I(sevg arg)I) is

(TRUE). Observe that (car x) is not lsqm, for if it were, (LISTP I(sevg

x)I) would reduce to (FALSE) by Lemma 8 but the reduction of (EQUAL

I(sevg x) l "NIL") is (FALSE) by a unique representation of explicit

values argument. So the reduction of (LISTP I(sevg x)I) is (TRUE) and

we infer that the reduction of both (FORMP (CAR i(sevg x)I)) and

(FORMP.LSTP (CDR I(sevg x)j)) is (TRUE). Moving the CAR and CDR inside,

using Lemmas 9 and 10, we determine that the reduction of both (FORMP

I(sevg (car x))I) and (FORMP.LSTP I(sevg (cdr x))I) is (TRUE), and by

using our induction hypothesis, we establish that the reduction of

(FORMP I(sevg arg)I) is (TRUE) when arg is (car x) or an element of (cdr

x), which is to say, for each element arg of x. Q.E.D.

We now prove the first of the two lemmas used directly in the proof

that our implementation of the Metatheorem is correct. Lemma 18
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establishes that if (FORMP c) reduces to (TRUE) and c is represented by

(list 'QUOTE obj), then obj itself represents a term. In fact, the

lemma holds in the other direction too, but we do not need it or prove

it in that direction.

Lemma 18 ("FORMP of a QUOTEd evg iff termp"). If (termp (list

'QUOTE obj)) and the reduction of (FORMP I(s (list 'QUOTE obj))I) in

T 1 .5 (equivalently, MD[T 2]) is (TRUE), then (termp obj).

Proof. Observe that the first hypothesis is equivalent to (evg

obj) and the second hypothesis is equivalent to the supposition that the

reduction of (FORMP I(sevg obj)I) is (TRUE). The proof is by induction

on the size of obj.

Base case. If obj is not a cons, then by Lemma 8 ("LISTP iff listp

and not Isqm") we know (LISTP 1(sevg obj)I) reduces to (FALSE). Thus,

by our FORMP hypothesis, we know the reduction of (SYMBOLP I(sevg obj)I)

is (TRUE). Hence, by Lemma 13 ("SYMBOLP iff symbolp") we know (symbolp

obj), which guarantees (termp obj).

Induction step. obj is a cons. Consider (car obj).

(a). If (car obj) is 'QUOTE, then we must show (i) (listp (cdr

obj)), (ii) (null (cddr obj)), and (iii) (evg (cadr obj)). The

reduction of (FORMP j(sevg obj)j) is the reduction of (FORMP (CONS

"QUOTE" J(sevg (cdr obj))I)), which means that the reduction of both

(LISTP I(sevg (cdr obj))j) and (EQUAL "NIL" (CDR I(sevg (cdr obj))I)) is

(TRUE). Lemma 8 ("LISTP iff listp and not Isqm") is sufficient to

ensure (i). In addition, Lemma 8 tells us (cadr obj) is not Isqm. Thus

the reduction of (EQUAL "NIL" (CDR I(sevg (cdr obj))I)) is the reduction

of (EQUAL "NIL" I(sevg (cddr obj))I) by Lemma 9 ("CDR is cdr when not

Isqm"). But then (cddr obj) is NIL, by a unique representation of

explicit values argument. So (ii) holds. As for (iii), note that since

both obj and (cdr obj) are listps and neither (car obj) nor (cadr obJ)

is Isqm, (evg obj) establishes (evg (cdr obj)) which in turn gives us

(evg (cadr obj)), which is (iii).
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(b). If (car obj) is not 'QUOTE, then we need to show (i) (plistp

(cdr obj)), (ii) (equal (length (cdr obj)) (arity (car obj))), and (iii)

(for z in (cdr obj) always (termp z)). Our hypotheses are (evg obj) and

that the reduction of (FORMP I(sevg obj)j) is (TRUE). First we

establish that (car obj) is not Isqm. Suppose it were. Then the

reduction of (LISTP I(sevg obj)I) would be (FALSE) by Lemma 8 ("LISTP

iff listp and not lsqm") and thus the reduction of (FORMP I(sevg obj)I)

would be (FALSE) since the reduction of (SYMBOLP j(sevg obj)j) is

(FALSE) by Lemma 13 ("SYMBOLP iff symbolp"). Thus, (car obj) is not

Isqm and the reduction of (LISTP I(sevg obj)I) is (TRUE).

Thus, our hypothesis that the reduction of (FORMP I(sevg obj)I) is

(TRUE) gives us that the reductions of both

(EQUAL (ARITY (CAR I(sevg obj)I))

(LENGTH (CDR j(sevg obj)I)))

and

(FORM.LSTP (CDR I(sevg obj)j))

are (TRUE). Hence the reduction of

(PLISTP (CDR I(sevg obj)I))

is (TRUE). By lemmas 9 and 10 ("CDR is cdr when not Isqm" and "CAR is

car when not Isqm"), and Lemma 16 ("ARITY is arity"), the reduction of

each of the following is (TRUE):

(EQUAL j(sevg (arity (car obj)))l
(LENGTH I(sevg (cdr obj))f)),

(FORM.LSTP 1(sevg (cdr obj))I),

and

(PLISTP I(sevg (cdr obj))I).

Thus, by Lemma 14 ("if PLISTP, then plistp and list of evgs") we know

(plistp (cdr obj)) is non-NIL (which establishes (i)) and that every

element of (cdr obj) is an evg. But now we can apply Lemma 15 ("LENGTH
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is length when list of evgs") and Lemma 17 ("if FORM.LSTP, then list of

FORMPs") to get that the reduction of

(EQUAL I(sevg (arity (car obj)))l
I(sevg (length (cdr obj)))I)

is (TRUE) and that for every arg in (cdr obj), the reduction of (FORMP

I(sevg arg) j) is (TRUE). The former is sufficient to guarantee (ii), by

a unique representation of explicit values argument. The latter

guarantees (iii) since, by induction hypothesis, when the reduction of

(FORMP I(sevg arg)I) is (TRUE) for an arg whose count is smaller than

obj, then (termp arg) is non-NIL. Q.E.D.

C. Lemma 19

We now prove the final lemma used in the argument that our

implementation of the Metatheorem is correct. Lemma 19 establishes that

if obj represents term t, then (list 'QUOTE obj) represents a quotation

of t.

Lemma 19 ("QUOTED term is a quotation"). If (termp obj), then j(s

(list 'QUOTE obj))l is a quotation of I(s obj)I.

Proof. By the definition of s, (s (list 'QUOTE obj)) is (sevg

obj).

The proof is by induction on the size of obj.

Base Case. If obj is not a cons, then from (termp obj), we have

that (symbolp obj). But I(sevg obj)l is then "obj" and 1(s obj)l is

obj.

Induction step. If obj is a cons, consider (car obj).

(a). Suppose the car of obj is 'QUOTE. I(s obj)l is 1(sevg (cadr

obj))I. From (termp obj), we infer (evg (cadr obj)). From Lemma 7

("sevg of an evg is an explicit value"), we infer that I(sevg (cadr

obj))l is an explicit value. Hence one quotation of I(sevg (cadr obj))

is (LIST "QUOTE" I(sevg (cadr obj))I), which we now show is in fact

I (sevg obj)r. Since (termp obj) and the car of obj is 'QUOTE, (cdr obj)
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is a list, (cadr obj) is an evg (and thus not Isqm) and (cddr obj) is

NIL. Thus, I(sevg obj)l is (CONS "QUOTE" (CONS I(sevg (cadr obj))!

"NIL")), which is (LIST "QUOIE" I(sevg (cadr obj))I).

(b). If (car obj) is not 'QUOTE, then obj has the form (fn arg 1
... arg n) , where n is the length of (cdr obj), (arity fn) is n, and

(termp argi) for each i. Hence I(sevg obj)I is (LIST "fn" 1(sevg arg1 )j

• .. I(sevg argn)1) since no arg i is lsqm. By inductive hypothesis, each

I(sevg argi)l is a quotation of arg i . Q.E.D.
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VIII EFFICIENT COMPUTATION ON EXPLICIT VALUES

To use metafunctions efficiently we need a method for rapidly

computing the object objd such that the term represented by (list 'QUOTE

objd) is the reduction of (simp I(s (list 'QUOTE objc))I), when simp is

an explicit value preserving function.

Every time an explicit value preserving function fn is defined in

our theorem-proving system, we store in the definition cell of the

INTERLISP literal atom Ifn a routine with the following property:

If fn takes n arguments and cl, ..., cn are explicit
values represented by (list 'QUOTE obj ), ... , (list 'QUOTE
Objn) respectively, then (list 'QUOTE ilfn objl ... objn))
represents the reduction of (fn cl ... cn).

Below we show how we generate the INTERLISP routine for ifn. We leave

to the reader the proof that the program constructed has the desired

property. In most cases the proof is straightforward, given the lemmas

already proved. The statement of this lemma makes no claim about the

efficiency of Ifn but we will discuss efficiency after indicating how

the routines are generated.

f. Consider first those functions that are built in. A suitable

definition of Itrue, the routine corresponding to TRUE, is (lambda ()

It). FALSE is similar. The routine for EQUAL is (lambda (x y)(cond

' ((equal x y) It)(T If))) -- i.e., it returns It if the two evgs are

equal INTERLISP objects and If otherwise. The routine for IF should

return the value of its third argument if that of its first is If and

otherwise return the value of its second argument. Thus, (lif x y z)
should be macro-expanded into (cond ((eq x If) z)(T y)). Any function

definition of hlf must first evaluate x in the environment of the

t calling procedure and then selectively evaluate either y or z in theU
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I
environment of the calling procedure. We explain why lif must not

evaluate all three arguments when we examine the case for recursive

functions.

Before proceeding, recall the property that Ifunctions are supposed

to have. Consider lequal. It is supposed to be the case that if c I and

c2 are explicit values represented by (list 'QUOTE objl) and (list

'QUOTE obJ 2 ), then the reduction of (EQUAL c1 c2 ) is represented by

(list 'QUOTE (lequal obj1 obJ2 )). But Lemma 11 ("EQUAL iff identical")

establishes that (EQUAL c1 c2 ) reduces to (TRUE) if and only if (equal

obj I obJ 2 ) is non-NIL, and (list 'QUOTE ([equal objI obJ 2 )) represents

(TRUE) or (FALSE) according to whether (equal objj obJ 2 ). So lequal is

has the property claimed. The proofs of the other Ifunctions are

similar.

The Ifunctions for the various primitive shell functions are

defined similarly so we will only exhibit the definitions of Ilistp,

Icons, Icar, and lcdr.

(Ilistp (lambda (x)
(cond ((and (listp x)

(not (eq (car x) 1sqm)))
It)
(T If))))

(Icons (x y) (cons x y))

(Icar (lambda (x)
(lif (Ilistp x) (car x) 0)))

(lcdr (lambda (x)

(lif (llistp x) (cdr x) 0)))

Observe how their correctness follnws immediately from such lemmas as 8

("LISTP iff litp and not Isqm") and 9 ("CDR is cdr when not Isqm").

Now we consider functions introduced by the user, either via the

shell principle or the principle of definition. Suppose we have

correctly obtained the INTERLISP routines for all the previously

introduced explicit value preserving functions and are now considering

some newly introduced function fn.
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Suppose fn is introduced by the shell principle. If fn is a

recognizer, Ifn is the INTERLISP function that returns It or If

according to whether its argument is a listp whose car is Isqm and whose

cadr is the name of the shell constructor or bottom object of the class.

If fn is a bottom object function, ifn returns the list of length 2 with

Isqm as its car and the bottom object name as its cadr. If fn is a

constructor function, Ifn returns a list of length n+2, with Isqm as its

car, the constructor function name as its cadr, and n elements in the

cddr. The ith element of the cddr is just the ith argument to ifn if

that argument satisfies the ith type restriction and otherwise is the

evg representing the ith default value. Type restrictions are checked

by calling the already obtained routines corresponding to the finite set

of recognizers that must approve or disapprove of the argument. The evg

for the default value is obtained by calling the already defined routine

for it. Finally, if fn is the ith accessor function of a shell, Ifn

returns the i+2nd element of its argument if its argument satisfies the

recognizer routine for its shell class (but is not the representation of

the optional bottom object), and otherwise returns the evg for the ith

default value.

If fn is none of the above, it must be a defined function. Its

definition must be of the form (EQUAL (fn x, ... xn) body), where every

function symbol in body (other than fn) is explicit value preserving.

Thus, for each such function symbol we have a routine. Let lbody be the

' -. INTERLISP expression obtained by replacing uses of fn in body as a

function symbol by Ifn and uses of other function symbols in body by the

name of the corresponding routine. Define the INTERLISP routine ifn

with (lambda (xI ... xn) lbody). For example, given the definition of

APPEND:
T Definition.

(APPEND X Y)

(IF (LISTP X)
. (CONS (CAR X) (APPEND (CDR X) Y))
U Y),

the definition for lappend is:
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(lappend (lambda (x y)
(lif (llistp x)

(icons (Icar x) (lappend (icdr x) y))
y))).

lfn always terminates and has the desired property. The key observation

is that a certain measure of the arguments decreases on every recursive

call (namely the measure that "lifts" the evgs back into the theory and

measures them with the function used to justify the definition of fn).

The proof relies upon the fact that (if x y z) only evaluates y when x

evaluates to non-If, and only evaluates z otherwise. The reason is that

the measure justifying the admission of fn was proved to decrease in all

recursive calls of fn in the true-branch of the IF provided the test was

true, and was proved to decrease in the false-branch provided the test

was false. Thus, the inductive hypothesis that the computation of y is

correct and terminates can only be obtained in the case where x is known

to have computed to non-if.

This concludes the sketch of how we can generate routines for each

explicit value preserving function in the theory.

For efficiency the theorem-prover actually includes built-in

definitions of PLUS and LESSP and hand-coded versions of iplus and

llessp that take advantage of the hardware for operating on evgs

representing Peano integers and avoid the necessity for recursion by

SUBI. However, once one gets away from the hardware level the functions

one defines can usually take advantage of the same algorithms an

efficient procedure might.

While the code we generate for user-defined functions is equivalent

to that sketched above, we actually compile it after optimizing it in
four ways.

The first optimization technique is to expand certain built-in

functions to avoid incurring an INTERLISP procedure call in cases where
the compiled code represents only a few machine instructions. For

qI example we expand references to such basic functions as IF and LISTP by

expanding the definitions of the corresponding INTERLISP procedures

"inline."

100



The second optimization technique eliminates the tension between

INTERLISP's convention of testing against NIL and the theory's

convention of testing against (FALSE). In general, the code for (LISTP

X) tests (and (listp x) (neq (car x) lsqm)) against NIL and branches to

return If or It accordingly. According to the optimization presented in

the previous paragraph, if (LISTP X) occurs in the test of an IF, we

might merely expand (LISTP X) and then test the result against If and

branch accordingly. But it is inefficient for the expansion of (LISTP

X) to branch on NIL to return It or If only for IF to test the result

against If and branch again. By keeping track of whether the results of

built-in predicates such as LISTP, EQUAL, and AND are only being tested

in IFs, our expansion avoids the redundant returning of It and If and

the testing against If.

The third optimization technique eliminates much of the testing of

listp and lsqm that would otherwise be necessary in list processing. In

general, the code for (CAR X) expands to

(cond ((and (listp x) (neq (car x) lsqm))
(car x))
(t 0)).

However, if we can prove that the tests governing that occurrence of

(CAR X) imply (LISTP X), then (CAR X) can be expanded into (car x) --

which compiles into a single machine instruction. Similarly, in

expanding (EQUAL X Y), which in general must test (equal x y), we

actually test (eq x y) -- which requires a single machine instruction --

when we know that one of X or Y is a QUOTEd literal atom.

The three optimization techniques above produce the following code

from the definition of APPEND:

(lappend (lambda (x y)

(cond ((and (listp x) (neq (car x) lsqm))
(cons (car x) (lappend (cdr x) y)))
(T y)))).
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The fourth optimization technique eliminates the expense of

recomputing common subexpressions in the body of a definition during any

evaluation of that body. To each common subexpression we allocate a

temporary variable that is set to the value of the subexpression the

first time it is evaluated. Because we do not put the code into "COND-

normal form," thereby removing all conditionals from the tests of other

conditionals, a given occurrence o of a subexpression s of a definition

can have the property that during some evaluations of the body, a prior

occurrence of s been evaluated before the occurrence at o is reached,

while on other evaluations of the body, no prior occurrence of s has

been evaluated before the evaluation at o. We therefore initialize our

temporary variables with the atom IX (which is not an evg) and during

the evaluation of a body test the temporary variables against IX in

those situations in which our optimizer could not determine that the

variable had been previously set. We do not save the values of car/cdr

nests since they are compiled efficiently.

The INTERLISP compiler compiles certain forms of recursion as

iteration. Thus, the second call of BAGINT In the compiled version of

that function is actually implemented as a PDP-1O jump instruction

rather than a true recursion.

Here is the INTERLISP code that is compiled for the definition of

CANCEL discussed in Section II. Each setq requires one instruction.

Each neq test requires one instruction.
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(Ieancel (lambda Wx
(prog ((templ (quote 1X)) (2temp2 (quote 1X))

(2temp3 (quote IX)) (2temp4 (quote IX))
* (2temp5 (quote IX)) (2temp6 (quote IX)))

(return
(cond
((and (setq 2temp6 (neq (lequality? x) If))

(setq 2teuap5 (neq (Iplus-tree? (lear (cdr x)) if))
(neq (lplus-tree? (setq 2temp4 (Icar (cddr x)))) If))

(list
(quote EQUAL)
(lplus.tree
(lbagdiff

(setq 2temp3 (Ifringe (cadr x)))
(setq 2temp2

(ibagint 2temp3
(setq 2templ (Ifringe (caddr x)))))))

(Iplus-tree (Ibagdiff 2templ 2temp2))))
((and 2temp6

(cond ((neq 2temp5 (quote IX)) 2temp5)
(T (neq (lplus-tree? (Icar (cdr x))) If)))

(neq (Imember (cond ((neq 2temp4 (quote IX)) 2temp4)
(T (setq 2temp4 (Icar (cddr x)))))

(setq 2temp3 (Ifringe (cadr x))))

(cons
(quote IF)
(cons
(list (quote NUMBERP) 2temp4)
(cons (cons (quote EQUAL)

(cons (lplus-tree (Idelete 2temp4 2temp3))
(quote ((ZERO)))))

(quote ((FALSE)))))))
((and 2temp6

(neq (Iplus.tree? (lear (Icdr (cdr x)))) If)
(neq (Imember (cadr x) (setq 2templ (ifringe (caddr x))))

(cons (quote IF)
* (cons (list (quote NUMBERP) (cadr x))

(eons (list (quote EQUAL)
(quote (ZERO))
(Iplus-tree (Idelete (eadr x) 2templ)))

(quote ((FALSE))
(Tx)))

For exaple, if obj is the INTERLISP list structure that prints as
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(EQUAL (PLUS (PLUS A I) (PLUS B K))
(PLUS J (PLUS K (PLUS I X)))),

then (Icancel obj) is the INTERLISP list structure

(EQUAL (PLUS A B)
(PLUS J X)).

If obj is the INTERLISP list structure (EQUAL A (PLUS A B)) then

(Icancel obj) is the INTERLISP list structure

(IF (NUMBERP A)
(EQUAL (ZERO) (FIX B))
(FALSE)).

By all of the foregoing, we know that if obj represents a term, then

(Icancel obj) represents a term that is provably equal to that

represented by obj.

Note that Icancel sometimes returns a term with ZERO as its

function symbol. The theorem-prover will have to spend a small amount

of time converting that term to its normal internal form, (QUOTE 0),

during the course of routine simplification. We could have defined

CANCEL to return (LIST "QUOTE" 0) instead of (LIST "ZERO"). Both terms

have the same MEANING, so the proof of correctness is no more difficult,

but the former term compiles to '(QUOTE 0), which is the internal normal

form for (ZERO). We did not define CANCEL this way only because at the

time CANCEL was first described in this paper we had not defined the

MEANING of QUOTE. The use of FALSE in Icancel can be similarly

eliminated.

1
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IX PROOF OF THE CORRECTNESS OF CANCEL

The theorem-prover compiles every explicit value preserving

function as soon as it has been admitted into the theory. During

subsequent proofs, the compiled code is executed whenever constant

expressions, such as (APPEND (LIST 1 2 3) (LIST 4 5 6)), arise. But the

theorem-prover cannot use Icancel as a proof procedure until it has been

proved correct.

This raises the question: how hard is it to prove the correctness

of metafunctions mechanically? We can report that it was not

particularly difficult to prove the correctness of CANCEL using our

theorem-prover.

Recall that we have two things to prove: that CANCEL returns a

FORMP when given one, and that CANCEL preserves the MEANING of input

FORMPs.

Despite the complicated definition of SYMBOLP and its subfunction

LEGAL.CHAR.CODE.SEQ, the proof of the FORMP property of CANCEL is almost

trivial. The reason is that because CANCEL constructs no new variable

* symbols, SYMBOLP never becomes involved in the correctness proof: the

FORMP hypothesis lets the theorem-prover establish FORMP for every

subform of the output that is a subform of the input. So the only work

in proving that CANCEL produces FORMPs when given FORMPs is proving that

AV the function applications "created" by CANCEL and its subfunctions are

well-formed in the sense of having a function name in the CAR and the

right number of FORMPs in the CDR.

To get the theorem-prover to prove the FORMP property of CANCEL, we

suggested that it prove the following easy lemmas: when given a FORMP,

FRINGE returns a FORM.LSTP, the result of DELETEing something from a

FORM.LSTP is a FORM.LSTP, (BAGDIFF X Y) is a FORM.LSTP when X is, and
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(PLUS.TREE X) is a FORMP if X is a FORM.LSTP. The theorem-prover proves

these lemmas without user assistance beyond the statement of the lemmas

and the implication that they are useful. The proofs require induction

-- sometimes on the structure of FORMPs, sometimes on the process of

considering the elements of one bag against those of another, and

sometimes on linear lists. Besides induction, the proofs require a good

deal of simplification and the careful expansion of certain function

definitions at the right moments. Once it has established these

properties of the subfunctions of CANCEL, the system can easily employ

the lemmas to prove that CANCEL produces a FORMP when given one. The

entire sequence of FORMP proofs requires about 25 seconds of CPU time on

a DEC KL.

The proof that CANCEL preserves the MEANING of its input and output

is somewhat more interesting. Starting from the basic axioms of the

theory and the definitions of the functions concerned, we first got the

theorem-prover to prove some obvious facts about the theory of lists

(e.g., that X is a MEMBER of (APPEND A B) iff it is a MEMBER of A or B),

the theory of bags (e.g., that the bag intersection of two bags is a

subbag of both), and the theory of numbers (e.g., that PLUS is

associative, commutative, and allows cancellation of a common first

argument on each side of an equation). Most of these classic theorems

require induction to prove.

Once these facts are available, we instructed the system to prove

the fundamental relationships induced by MEANING and PLUS.TREE between

bags and numbers. There are three key lemmas: (a) If X is a subbag of

Y, then the MEANING of the PLUS.TREE constructed from the bag difference

of Y and X is equal to the Peano difference of the MEANINGs of the

PLUS.TREEs constructed from Y and X. (b) If X is a subbag of Y then the

MEANING of the PLUS.TREE constructed from Y is a number greater than or

equal to that constructed from X. (c) The MEANING of (PLUS.TREE (FRINGE
X)) is the MEANING of X, when (PLUS.TREE? X) is true. The lemmas are

all proved by induction -- sometimes on the structure of FORMPs and

sometimes on that of bags. The first lemma is the hardest and we invite

the reader to prove it as an exercise.

106

"-1 ... ..- " "



Once these and several similar lemmas have been proved, the fact

that CANCEL preserves MEANING is fairly obvious. We will sketch the

system's proof for the first branch of CANCEL. Suppose the expression

to be CANCELed has the form (EQUAL u v), where u and v are PLUS-trees.

By expanding the definition of MEANING, we must prove that the MEANING

of the output of CANCEL is equal to:

*1 (EQUAL (MEANING u A) (MEANING v A)).

The output of CANCEL in this case is

(LIST "EQUAL"
(PLUS.TREE (BAG.DIFF (FRINGE u) int))
(PLUS.TREE (BAG.DIFF (FRINGE v) int))),

where int is the bag intersection of the FRINGEs of u and v. The

MEANING of the output is thus the equation of the MEANINGs of the two

PLUS.TREE expressions:

*2 (EQUAL (MEANING (PLUS.TREE (BAG.DIFF (FRINGE u) int)) A)
(MEANING (PLUS.TREE (BAG.DIFF (FRINGE v) int)) A)),

and we must show that *1 and *2 are equal. But the MEANING of

(PLUS.TREE (BAG.DIFF Y X)) is equal to the MEANING of (PLUS.TREE Y)

minus the MEANING of (PLUS.TREE X), provided X is a subbag of Y. Since

int is a subbag of both (FRINGE u) and (FRINGE v) -- by the fact that

,r the bag intersection of two bags is a subbag of both -- we can rewrite

*2 to:

*3 (EQUAL (DIFFERENCE (MEANING (PLUS.TREE (FRINGE u)) A)

(MEANING (PLUS.TREE int) A))
(DIFFERENCE (MEANING (PLUS.TREE (FRINGE v)) A)

(MEANING (PLUS.TREE int) A))).

Since the MEANING of (PLUS.TREE int) is less than or equal to the two

minuends, and the two minuends are always numeric, lemmas from Peano

arithmetic let us reduce the above equality to:

1I 107

4..



IN

*4 (EQUAL (MEANING (PLUS.TREE (FRINGE u)) A)

(MEANING (PLUS.TREE (FRINGE v)) A)).

But the MEANING of (PLUS.TREE (FRINGE X)) is the MEANING of X, when

(PLUS.TREE? X) is true. Thus, we can simplify *4 to:

*5 (EQUAL (MEANING u A) (MEANING v A)),

which is *1. Q.E.D.

The total CPU time required for the MEANING part of the CANCEL

proofs (not counting the proofs of the list, bag, and arithmetic lemmas

which are part of the system's standard repetoire) is about seven

minutes. Thus, the entire CANCEL exercise consumes about eight CPU

minutes plus the user's time to formulate the necessary lemmas -- a

small price to pay for the assurance that the new procedure is sound.

The theorem-prover has proved the correctness of a much more

difficult metafunction, namely, the totality, soundness, and

completeness of a decision procedure for propositional calculus. The

proof of that theorem is discussed in [1]. The theorem-provei required

no modification to prove the correctness of CANCEL. In particular, the

heuristics developed to prove "ordinary" theorems were just as effective

when applied to "metatheorems" stated in terms of MEANING. The proof of

the correctness of CANCEL involved much less user direction (in the form

of lemmas) than many other mathematical results the system has proved

(e.g., the prime factorization theorem derived from our shell axioms for

numbers and lists). The proof is also easier than the correctness

proofs for many programs (e.g., our fast string searching algorithm).

We are therefore optimistic about the prospects for adding useful

new proof procedures to our theorem-prover via this approach.

1
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X USING METAFUNCTIONS EFFICIENTLY

Whenever the user commands the theorem-prover to prove a theorem,

he provides the system with a list of tokens indicating how the theorem

is to be stored for future use. In [I] we employed four such tokens:

REWRITE, indicating that the theorem was to be used as a rewrite rule,

ELIM, indicating that it is to be used to eliminate certain

"undesirable" function symbols, GENERALIZE, indicating that the theorem

suggests properties to keep in mind when generalizing subgoals, and

INDUCTION, indicating the theorem is useful in the search for well-

founded relations and measures explaining definitions and inductions.

The system checks that the theorem is suitable for use in the ways

indicated (e.g., that an INDUCTION lemma really does state a property

about a known well-founded relation). The purpose of the tokens is to

allow the user to inform the system that the theorem should be used in

the ways indicated.

We have added the new token METAO, indicating that the lemma

establishes that a certain function is a correct simplifier. A METAO

lemma must have the form of *META in our Metatheorem. Once proved, the

compiled code for the metafunction, e.g., Icancel, is stored so that it

is executed on every term at the propositional level of every goal to

which the simplifier is applied (i.e., the function is applied in turn

to the atom of every literal in each clause simplified). Whenever the

term returned is different from the input term, that occurrence of the

input term is replaced by the output.

The Metatheorem justifies not only the implementation of METAO

lemmas -- which let the user add new simplifiers to be applied at the

propositional level -- but the implementation of what we call METAl

lemmas -- which let the user add new simplifiers to be applied to every

term simplified. We envision ultimately providing a variety of META
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tokens corresponding to different "hooks" within the system where users

need the ability to place new procedures. For each such hook the form

required of the *META-lemma may be different (e.g., in some places it is

sufficient to know that the MEANING of the output implies that of the

input).

CANCEL is now in standard use as a METAO-type proof procedure in

our system. The actual definition of CANCEL in use differs slightly

from the one presented in Section II. The real definition uses (LIST

"QUOTE" 0) and (LIST "QUOTE" (FALSE)) instead of (LIST "ZERO") and (LIST

"FALSE"). In addition, its propositional structure is slightly

different so that it is more efficient: LISTP and EQUAL tests are used

in place of the functions EQUALITY? and PLUS.TREE?, and the outermost IF

first tests whether the argument is an equality and exits immediately

when it is not, while the definition presented here tests for equality

three times. Both versions of CANCEL have been proved correct and the

proofs are virtually identical. The use of CANCEL as a METAO-type proof

procedure slows down our system by roughly one half of one percent on a

sample of several hundred theorems, most of which do not involve

arithmetic.

To complete this description of our work on metafunctions, we give

below our theorem-prover's output on a simple theorem, concocted to

illustrate CANCEL at work. The proof is produced immediately after

CANCEL has been proved correct and the numerically valued functions

TIMES and EXPT have been introduced. The proof involves only equality

reasoning and cancellation.

Theorem.
(IMPLIES (AND (NUMBERP A)

(NUMBERP X)
(NUMBERP B)r4 (EQUAL (PLUS (PLUS A B) D)

(PLUS B (PLUS (TIMES I J) D)))
(EQUAL (PLUS A X)

(PLUS B (TIMES I J))))
(EQUAL (EXPT A X) (EXPT A B)))

This simplifies, applying the lemma CORRECTNESS.OF.CANCEL and
expanding the definition FIX, to the new conjecture:
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(IMPLIES (AND (NUMBERP A)
(NUMBERP X)
(NUMBERP B)
(EQUAL A (TIMES I J))
(EQUAL (PLUS A X)

(PLUS B (TIMES I J))))
(EQUAL (EXPT A X) (EXPT A B))),

which again simplifies, rewriting with CORRECTNESS.OF.CANCEL
and unfolding FIX, to the conjecture:

(IMPLIES (AND (NUMBERP X)

(NUMBERP B)

(EQUAL X B))
(EQUAL (EXPT (TIMES I J) X)

(EXPT (TIMES I J) B))),

which again simplifies, clearly, to:

(TRUE).

Q.E.D.

1
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